I-10 NATIONAL FREIGHT CORRIDOR STUDY

0 200

PHASE II REPORT/ CORRIDOR ITS ARCHITECTURE

Table of Contents

Executive Summary	E-1
Final Report	1
Chapter 1 - Data Sources	1
Chapter 2 - User Needs, Institutional Issues, and the Corridor Vision	14
Chapter 3 - Short-Term Program Development	41
Chapter 4 - Standards	59
Chapter 5 - Communications	70
Appendices	A-1
Appendix A - CVISN Projects Referenced in State CVISN Plans	A-1
Appendix B - User Needs Survey	A-5
Appendix C - Web Survey Questions	A-11
Appendix D - Market Packages	<i>A-16</i>
Appendix E - Goals and Objectives	A-19
Appendix F - Projects Mapped to Goals	A-21
Appendix G - Detailed Project Descriptions	A-35
Appendix H - SWOT Analysis	A-44
Appendix I - Initial Project Schedule	A-60
Appendix J - Project Cost Estimates	A-61
Appendix K - Relevant ITS Standards	A-71
Appendix L - Summary Descriptions of NTCIP Protocols	A-75
Appendix M - Center-To-Center (C2C) Communications Survey	A-77
White Papers	W-1
Advanced Traveler Information Systems	W-1
Emergency Management	W-9
Security	W-16
Incident Management	W-30
Public-Private Partnerships	W-36
Corridor ITS Architecture	Ar-1
Flow Diagrams	Attached
Interconnect Diagrams	Attached

Executive Summary

Background

The Interstate 10 National Freight Corridor extends across the eight states that form the southern boundary of the contiguous 48 states. From west to east, the corridor crosses parts of California, Arizona, New Mexico, Texas, Louisiana, Mississippi, Alabama, and Florida. Four of the states form the entire land border between the United States and Mexico. The corridor passes through at least one metropolitan area in each of the eight states. Phase II of the study was initiated to build on the previous effort, assisting the corridor states in their transition from a pooled fund status into a formal corridor coalition. To accomplish this goal, Phase II focuses on the development of an initial intelligent transportation systems (ITS) program and architecture. The primary intent was that by creating a corridorwide ITS architecture, the states would have 1) a process to bind them, 2) a means of seeking additional funding, and 3) the ability to implement improvements quickly. The study focus remains on goods movement and therefore addresses those ITS

elements that are relevant to freight. This does include some more general congestion relief and incident management issues, which greatly affect freight.

Phase II Work Plan

Existing state and regional

In 2005, the initial phase of the I-10 National Freight Corridor Study was completed under the joint auspices of eight state departments of transportation (DOTs). The objectives of the initial study included:

- assessing the economic importance of freight movement on Interstate 10
- identifying current and future problems in the areas of traffic operations and safety that could impede the movement of freight
- identifying and evaluating strategies to facilitate freight flow within the corridor

ITS architectures cover the entirety of the I-10 Corridor. The study built upon the existing architectures, avoiding replication of existing efforts while addressing gaps. The resulting corridor architecture is intended to provide a common set of goals for multistate initiatives and projects relevant to goods movement throughout the corridor.

As part of the development of the ITS architecture, the study team worked with the states to develop an initial ITS program for the corridor. The program includes projects that the corridor is likely to pursue in the next 10 years. Development of the program included a formal review of the estimated costs of the projects, along with an analysis of the strengths, weaknesses,

opportunities, and threats (SWOT) that compared the projects according to how well each meets the stated needs of the corridor. The resulting 109 projects represent a consensus of efforts that will build toward improved freight movement along the entire I-10 Corridor.

User Needs

Identifying user needs is a critical part of the systems engineering and ITS architecture processes. These needs are used to develop the goals and objectives, which then determine how the corridorwide ITS architecture and program will meet these needs. The study team identified user needs through discussions with stakeholder representatives and review of documents provided by stakeholder groups. Additional user needs were identified from the various state and regional architectures, and from the state Commercial Vehicle Information Systems and Network (CVISN) plans. Table 1 illustrates the needs by functional area. They are also listed as formal goals and objectives within the Phase II report.

As a freight-focused study, the needs of the private shippers and carriers needed to be considered. Identification of the freight user needs began with a survey of previous research on commercial vehicle congestion and travel time information needs. Knowledge from previous research was used to develop a user survey of ITS needs for the trucking industry. More than 300 companies were contacted. The highlights of the survey results are as follows:

• Their most common delays are from congestion, accidents, and construction

- About 40 percent share real time information already
- About half are willing to pay for traffic information but are not willing to pay for anything else
- Information within the next four hours is most relevant to them
- Dynamic message signs (DMS) are the preferred way to get information, although Internet and cell phones were close

Table 1. Summary of Corridor ITS Needs

Institutional	٠	Identify keeper/manager of the corridor ITS architecture
needs	•	Develop and use a process addressing/aligning ITS project requests with each project's relevance
		and compliance with the local/regional architecture
	•	Coordinate regional/state agencies to resolve transportation issues
	•	Develop memoranda of understanding to facilitate data sharing and agency roles
	•	Develop common ITS planning objectives to better coordinate ITS efforts along the corridor
	٠	Improve coordination between traffic management agencies and emergency response agencies for
		evacuation, traffic data exchange, and traveler information purposes
	•	Effective communication between all state and local agencies in the corridor
Travel and	•	Expand deployment of centralized traffic management systems in parts of the corridor
traffic	•	Improve and expand data collection network for traveler information, planning, and operations
management	•	Develop a corridorwide clearinghouse for transportation data management
neeus	•	Improve traffic control in major cities and towns
	٠	Expanded CCTV video coverage of I-10 Corridor, primary roadways
	٠	Improved safety and homeland security efforts throughout the corridor
	٠	Improved traveler information on I-10, primary routes, and other strategic locations
	٠	Automated incident detection and management system for I-10 and primary routes
	٠	Improved incident response coordination
	٠	Improve interagency notification for traffic control and IM
	•	Congestion management strategies
Commercial	٠	Overweight vehicle detection systems
vehicle	٠	Improved safety assurance at ports of entry
operations	٠	For real time, en-route weather information
needs	•	For credentials administration and verification
	•	For more effective size/weight enforcement
Emergency	٠	Improved emergency response coordination
management	٠	Emergency response data transfer
needs	٠	Interoperable communications between local police/fire/rescue
	•	Coordination between regional emergency response agencies
	•	Information management needs
	•	Corridorwide clearinghouse for transportation data management
	•	Maintenance and construction operations needs
	٠	Widely distribute road closure plans (e.g., media coverage)
	٠	Real time vehicle tracking and conditions reporting systems
	•	Smart ITS work zones for long-term construction projects

ITS Program

As part of the development of an initial ITS architecture, a program of projects is necessary. The corridor's ITS program was developed and prioritized by the eight states, resulting in a list of more than 100 projects anticipated to have corridorwide benefits. Of these, 17 were identified by the Technical Advisory Committee (TAC) and consultants as being of particular importance to the development of ITS in the corridor, and thus appropriate for short-term implementation. Chapter 3 of this report includes brief descriptions of all the individual projects and how they fit into the corridor's ITS plan.

Table 2. Initial ITS Program Projects

Project code	Project
ADM.1.1.1	I-10 Project Management Contract
INF2.1.1	Create a web site with links to web sites for all states within the corridor
OPS1.3.4	THETA – Develop Stage 2 capabilities (evacuation across state lines, contra flow, evacuation shelters)
INF1.3.1	Fiber connections to provide state-to-state connectivity
INF2.1.2	Enhance the existing web site with an e-mail alert system
OPS2.2.5	Study in-state integration (FL, TX, CA, AZ) vs. statewide TMC (MS)
OP\$6.1.1	Establish stakeholder group with port facilities and determine where improvements are possible
FI2.4.1	Upgrade of fog detection on Bayway Bridge
INF3.2.1	Localized and regional weather and traffic at parking facilities
OP\$3.4.1	Coordination with federal agencies to ensure consistent operations of ports and border crossings
INF2.4.3	Create a "War Map," a single web site for all agencies that has all available information along I-10
OPS4.2.3	Integrate smart work zone into corridor web site
OPS1.4.1	TIMTOW – private sector certification for towers
FI1.2.2	Integrate key asset surveillance into existing TMC
INF2.4.5	Integrating the systems into regional information sharing
FI2.4.2	Additional dust warning system locations in Arizona
FI1.1.1	New TMC in Gulfport, MS

Communications

Each state and region uses long-distance communications to and from field devices and to and from other ITS centers. The Phase II report examined the existing long-distance communication systems in the corridor states and evaluated the potential for creating and expanding regional networks to cover longer portions of the corridor. The report also examined how the states and local jurisdictions currently share information on a regional and corridorwide level.

ITS Architecture

Working with the eight states, the study team developed a freight-centered ITS architecture that covers the entire corridor. The corridorwide ITS architecture addresses the gaps between the state and regional architectures. This corridorwide ITS architecture will make it possible for the corridor to pursue federal funds for ITS projects. The architecture complies with all 23 CFR 940 rules and is compatible with all state and regional ITS architectures along the I-10 Corridor.

Note: Grayed out boxes do not apply

Corridors of the Future

During the course of Phase II, the Federal Highway Administration (FHWA) created the Corridors of the Future Program. This program sought multistate corridors that were ready to address congestion using a corridor approach. The eight corridor states submitted an initial application to FHWA in October 2006. The I-10 National Freight Corridor was selected as one of 16 finalists. Subsequently, a second application was submitted in May 2007. In September 2007, the I-10 National Freight Corridor was designated as one of six national Corridors of the Future. The initial award for corridor projects included \$8 million for projects in Arizona and Louisiana. The I-10 National Freight Corridor is now moving toward more formal interagency agreements and status. This includes developing a memorandum of understanding between the eight states and working with the FHWA to sign a long-term agreement. The focus of the agreements will be to define how the eight states will continue to cooperate and share ideas. All eight states recognize the federal desire to pursue alternative and private sector funding for the long term. Additionally, all eight states recognize the need to continue to address congestion beyond their own borders.

The I-10 National Freight Corridor states look forward to a new future in promoting the growth of freight along this critical national corridor.

Chapter 1 Data Sources

1.1 Introduction

The National Interstate 10 Freight Corridor passes through eight states and numerous metropolitan areas. Because of the corridor's extent and breadth, a number of intelligent transportation systems (ITS) architectures have been developed along the corridor. Six of the eight corridor states have developed statewide architectures that vary considerably in their scope and level of detail. In the two states without a statewide architecture, the I-10 Corridor passes through eight regional architectures; the corridor also passes through the coverage of regional architectures in most of the other states.

Many of the existing architectures in the corridor provided data that was used for development of a freight corridor architecture. Other data sources were also identified and used. This chapter describes the data collection process and discusses the information gained from each data source.

1.2 Summary of Data Sources

1.2.1 Existing ITS Architectures

Because of the number and extent of existing architectures in the corridor, the I-10 Corridor Steering Committee elected to use the existing ITS architectures as a foundation for the corridor architecture wherever possible. Using data from the existing architectures facilitates development of compatible corridor architecture without replicating the numerous stakeholder meetings that contributed to the development of the various regional and statewide ITS architectures. Working off of the existing architectures not only helps to ensure compatibility between the existing architectures and the corridor architecture, but also allows the corridor architecture to be developed in a much shorter time frame at significant cost savings. A detailed discussion of the existing ITS architecture data can be found in Section 1.3 of this chapter.

1.2.2 CVISN Programs and Plans

The existing Commercial Vehicle Information Systems and Networks (CVISN) program efforts in each state, where available, provided one readily available source of additional information regarding integration of freight related systems. The initial development stages of a CVISN plan are generally similar to those of an ITS architecture. Where available, CVISN plans were included to help develop the more freight-related user needs, goals, objectives, etc., as input to a corridorwide ITS architecture.

1.2.3 Stakeholder Outreach

Although it would not be time- or cost-effective to replicate the usual ITS architecture stakeholder development process, a considerable amount of information can be gathered through communications with selected shipping interests, such as national and large regional carriers, port authorities and operators, and trucking associations. To ensure that stakeholders are provided with an opportunity to contribute their input, each state has provided contact information for those interests they believe would have valuable input to this process. Web-based survey instruments have also been used to reach out to a wider audience of interested parties. In limited instances where their input is critical, interviews with selected large-scale users have also been incorporated.

1.2.4 Technical Review Committees

As part of the development of the I-10 Corridor Architecture, representatives from each state participated in technical review committees that contributed information and expertise in the process of developing the ITS architecture. The committees ensured that information flowed in two directions. The committee members provided input into the corridor architecture based on recent developments in their states, and were also able to take new information and ITS architecture elements from the corridor architecture for use in their own state and regional ITS architectures.

1.3 ITS Architecture Data

The I-10 Corridor crosses the geographic boundaries of numerous existing statewide and regional ITS architectures. This section describes the architectures and some of the information obtained from them.

In the initial stages of the architecture development process, one of the more critical steps is identifying the stakeholders and their needs. To help streamline the architecture development process, the various stakeholders will be consolidated and grouped as appropriate for the corridor architecture. For example, the corridor architecture may include all county departments of transportation (DOTs) as a single stakeholder group. By identifying the individual stakeholders listed in each stakeholder group, the needs of all stakeholders in the group are represented in the architecture, and the representation in the architecture of information flows to those stakeholders is greatly simplified. Stakeholders' needs will be also be examined and reviewed, and needs that are appropriate for the larger freight corridor will be incorporated into the corridor architecture. Specific elements contained in the architectures, such as market packages, will be discussed in later chapters.

The following sections discuss the statewide and regional ITS architectures identified and used in development of the corridor architecture.

1.3.1 Florida

The I-10 Corridor extends across the width of northern Florida, from Jacksonville on the Atlantic coast to the Alabama state line. Florida has completed development of a statewide ITS architecture, and the Turbo Architecture database used in its development has been made available to the study team, as have additional materials. Regional architectures were also identified for the Escambia County-Santa Rosa County, Fort Walton Beach, and Tallahassee/Leon County regions; however, these regional architectures have been incorporated into Florida's Statewide ITS Architecture. PDF copies of the architecture documents have been downloaded, as has a districtwide regional architecture for the Florida Department of Transportation District 3, which covers the northwest portion of the state and most of the I-10 Corridor: and District 2, which covers the northeast portion of the state including the I-10 Corridor in that area.

1.3.2 Alabama

The I-10 Corridor crosses the southern extremity of Alabama, extending just 70 miles across the state's two Gulf coastal counties. While Alabama has not developed a statewide ITS architecture, a regional architecture was developed for the Mobile area, which includes the two coastal counties traversed by I-10. Documents relating to the Mobile regional architecture include a final

report, an Access-format database, and a list of stakeholders.

1.3.3 Mississippi

The Mississippi section of I-10 stretches 70 miles from the Alabama state line to the Louisiana state line. Mississippi has completed a statewide ITS architecture, as well as an architecture for the Gulf Coast region through which I-10 crosses the state. Electronic copies of the statewide architecture report, in Word format, and the statewide architecture database, in Access format, are available.

1.3.4 Louisiana

I-10 crosses the widest section of Louisiana, from the Mississippi border to the Texas border. Louisiana has developed a statewide architecture and the WSA team has located a copy of the statewide implementation plan. Regional architectures have also been identified for the New Orleans, Lafayette, and Baton Rouge areas. Final reports have been located for the regional architectures, as have database files, including a Turboformat file for Baton Rouge and an Access-format file for New Orleans.

1.3.5 Texas

The I-10 Corridor extends across the full width of Texas, coming particularly close to border crossings at the western end of the Texas portion of the corridor, near El Paso. Texas has not developed a statewide ITS architecture. The corridor extends through the limits of seven regional architectures. PDF documents have been identified and located for all of the regional architectures in the corridor, including the Beaumont, El Paso, Houston, Permian Basin (Odessa), San Angelo, San Antonio, and Yoakum regions. A Turbo-format database has been located for the Austin regional ITS architecture.

1.3.6 New Mexico

A portion of the I-10 Corridor extends across roughly half the width of the state, entering near El Paso and continuing on to the Las Cruces metropolitan area before turning west to Arizona. New Mexico is in the process of developing a statewide architecture, and draft documents for the architecture have been made available.

1.3.7 Arizona

In Arizona, the I-10 Corridor extends across the entire width of the southern part of the state, linking the state's two large metropolitan areas, Tucson and Phoenix. Arizona has developed a statewide architecture. The study team obtained the final report for the statewide architecture, along with final reports for the Tucson and Maricopa county (Phoenix area) regional architectures. All of the Arizona documents are in PDF.

1.3.8 California

The California portion of the I-10 Corridor crosses the southern portion of the state, linking several major cities in the Los Angeles metro area. The study team obtained both the final report and the Turbo database for the California statewide architecture. Final PDF reports were also obtained for both the Southern California regional ITS architecture and for the regional architecture for Los Angeles County, along with Turbo databases for the statewide and Southern California regional architectures.

1.4 Commercial Vehicle Information Systems and Networks Data

CVISN refers to "the collection of information systems and communications networks that support commercial vehicle operations (CVO)" (Richeson, 2000). These may include both publicly owned systems, as well as those owned and operated by motor carrier industry stakeholders. The CVISN program is intended to provide a framework of standards to promote information exchange and transmission using existing infrastructure.

For this project, the study team searched for all available CVISN documents and resources from the eight I-10 Corridor states. A summary of the CVISN documents located is found on the following pages. Detailed summaries of CVISN projects from the state plans can be found in Appendix A.

1.4.1 Florida

Florida completed development of a CVISN business plan in 2001. The study team obtained PDF versions of the business plan final report, along with copies of the program plan and the top-level design document. Florida's planned CVISN projects include 12 projects in four different program areas, including electronic credentials administration, safety information exchange, electronic screening systems, and programwide projects.

1.4.2 Alabama

Alabama completed a CVISN plan in 2004. The study team obtained the CVISN top-level design and program plan in PDF format. Alabama CVISN projects identified from the plans include a Commercial Vehicle Information Exchange Window (CVIEW) project to exchange CVO information with state and national systems, an electronic screening system to be developed in coordination with the CVIEW system, a roadside safety project intended to improve roadside screening and inspection data, and a credential/permit system.

1.4.3 Mississippi

Mississippi completed development of a CVISN plan in 2001. The study team obtained electronic versions of the program plan and top-level design documents. Projects referenced in the Mississippi CVISN plan include creation of a CVISN-compliant virtual "onestop" shop, expansion of PrePass programs in coordination with Louisiana, deployment of laptop and cellular phone connectivity for enforcement systems, expansion of combined ports of entry operations with neighboring states, and deployment of ramp sorting capability using weigh-in-motion (WIM) systems.

1.4.4 Louisiana

Louisiana has completed development of a CVISN plan. WSA has obtained Word versions of the program plan and the top-level design documents, and the CVISN Operational and Architectural Compatibility Handbook (COACH). CVISN projects identified in Louisiana include 17 different projects in the general areas of automated safety assurance, credentials, and automated screening.

1.4.5 Texas

Texas completed development of a CVISN plan in 2003. WSA has obtained a PDF version of the Texas CVISN program plan. The plan references nine CVISN projects, including a tax project run by the state comptroller's office, four state DOT projects (registration, oversize/overweight, and registration and

licensing projects), and four department of public safety projects.

1.4.6 New Mexico

New Mexico completed a CVISN plan in 2002. WSA has obtained copies of the plan and projects documents. Referenced projects include connectivity between ASPEN and Safety and Fitness Electronic Records (SAFER), expansion of ASPEN to all inspectors at all major inspection sites, and a CVIEW deployment.

1.4.7 Arizona

A CVISN plan has not yet been obtained from Arizona. However, a CVISN test plan document was found on the Arizona DOT web site, along with documentation of a CVISN safety information exchange project for the Nogales border crossing. Other referenced CVISN projects include two safety projects (ASPEN and CVIEW implementation), five credentials projects (including title/regulation projects, IFTA clearinghouse, and electronic credential projects), and a roadside screening project.

1.4.8 California

California's CVISN plans have not yet been identified. The project team will incorporate input from California's CVISN efforts when that information has been located.

1.5 Inventory of ITS Facilities and Stakeholders

This section provides a summary of existing and planned ITS facilities and stakeholders in the I-10 Corridor. Detailed tables of facilities by state are included in the appendices.

1.5.1 Method

Federal, state, and local governments and private sector entities have been planning and deploying ITS infrastructure along the I-10 Corridor for more than a decade. ITS architectures in the corridor were examined to evaluate the current status of ITS deployments in the corridor, and to develop data tables of ITS systems, stakeholders, and stakeholder groups to be used in development of the corridor ITS architecture.

To build these data tables, data representing ITS elements were extracted from architectures along the corridor. Data were obtained from architectures representing every state in the corridor, with the exception of Arizona. Table 1-1 provides a summary of the architectures referenced in the subsequent summary tables.

Not all architectures in the corridor were referenced for this step. In lieu of a statewide architecture, Texas developed a series of architectures for each DOT district. As the architectures are similar in format, it was decided to examine and extract data elements from three of the architectures that I-10 traverses, representing the larger cities and border regions of the corridor within Texas. Arizona's architecture documents containing summary-level data will be incorporated within the final ITS architecture. The Southern California Association of Governments (SCAG) architecture also contained summary-level data.

Table 1-1. ITS Architecture Data Sources

State	Architectures Referenced
California	California statewide architecture*
Arizona	None**
New Mexico	New Mexico statewide
Texas	San Antonio, El Paso, and Houston regional architectures***
Louisiana	New Orleans, Baton Rouge, and Acadiana (Lafayette area) regional architectures
Mississippi	Mississippi statewide architecture, Gulf Coast regional architecture
Alabama	Mobile regional architecture***
Florida	Florida statewide architecture Jacksonville and Pensacola/Tallahassee district architectures

* Detailed architecture provided inventory elements and stakeholders from throughout the state

** Maricopa and Pima architecture documents yielded only summary-level data

*** Alabama and Texas did not develop statewide architectures

1.5.2 Stakeholders and Stakeholder Groups

The architectures examined yielded more than 1,500 elements, representing approximately 360 unique stakeholders. To reduce this number to a usable level for purposes of developing the architecture database, some of the stakeholders were grouped into summary groups, resulting in just over 100 stakeholders and stakeholder groups.

Not all of the stakeholders were grouped. Federal agencies and other entities that serve in consistent roles along the extent of the corridor were left ungrouped. A summary of the stakeholder groupings is shown in Table 1-2.

Table 1-2. Preliminary Stakeholder Groupings

Ambulance Operators Bureau of Indian Affairs **Commercial Vehicle Operators Correctional Facilities** County Emergency Management Agencies **County** Police County/Local Public Works County/Local Transportation Agencies Drayage Companies Federal Bureau of Investigation **FMCSA** IFTA Intermodal Facilities IRP, Inc. Local Emergency Management Agencies Local Media Local Street Departments Local Traffic Management Agencies Metro Area TMCs Mexican Governmental Agencies Municipal Governments Municipal Public Works Departments National Guard NOAA Other Local Stakeholders Parish Levee Boards Port Operators Private Concierge Service Provider Private Maintenance Contractors Private Tow/Wrecker Providers Probe Information Providers Radio ISPs Railroads Regional MPO State DOT Central Office State DOT Maintenance State DOTs State Environmental Agencies State Motor Vehicle Dept./Div. State Police and Highway Patrol State Regulatory Agencies Telematics Service Providers Travel Service Providers **Tribal Governments** Universities and Colleges U.S. Army Corps of Engineers U.S. Customs and Border Protection U.S. Dept. of Defense U.S. Dept. of Interior **Utility Companies**

Archive Data Users City and County Governments **Convention** Centers County DOTs County Governments County/Local Public Safety Agencies County/Local Tax and Revenue Agencies **Customs Brokers Event Facilities Financial Institutions** Hazmat Regulatory Agencies Industry Groups International Boundary and Water Commission Local Broadcast Media Local Fire Departments Local Police Departments Local Traffic Generators Medical Facilities MetroScan Municipal Engineering Departments Municipal Public Safety Agencies Municipal Street Departments National Park Service/U.S. Forest Service Other Local Agencies Other State Agencies Parking Operators **Private Carriers** Private HAZMAT Providers Private Sector Traveler ISPs Private Weather Information Providers **Public Lands Agencies Rail Operators Refinery Operators** State Agriculture Departments State DOT Districts State DOT Traffic Engineering State Emergency Management Agencies State Governments State Natural Resources Departments State Public Safety Depts. State Tourism Agencies **Toll Facility Operators** Travelers Truck Companies/Shippers U.S. Army U.S. Coast Guard U.S. Dept. of Agriculture U.S. Dept. of Energy U.S. Immigration and Customs Enforcement **VII** Providers

1.5.3 Traffic Management Centers

Because many proposed ITS projects are likely to use some form of center-to-center communication, additional efforts were made to identify all traffic management centers in the corridor. Table 1-3 shows the centers that have been identified from the state and regional ITS architectures. Centers were identified in every state in the corridor, although not all planned centers are currently operational.

1.5.4 Other Corridor ITS Elements

The ITS elements from the inventoried corridor architectures were merged into a single data table. After filtering out elements not related to freight movement, approximately 1,500 elements remained. Table 1-4 provides a summary of the architecture elements and the states in which they were identified.

State	Center Name	Status
	Caltrans District 11 Intermodal TMC (San Diego and Imperial Counties)	Existing
	Caltrans District 8 Intermodal TMC (San Bernardino and Riverside Counties)	Existing
California	Caltrans District 12 Intermodal TMC (Orange County)	Existing
	Caltrans District 7 Intermodal TMC (Los Angeles and Ventura Counties)	Existing
	California Regional TMCs in Districts 7, 11, 8, and 12	Existing
	Arizona DOT TOC	Existing
	Maricopa County DOT TMC	Existing
	Chandler TMC	Existing
	Gilbert TMC	Existing
	Glendale TMC	Existing
	Mesa TMC	Existing
Arizona	Paradise Valley TMC	Existing
	Peoria TMC	Existing
	Phoenix TMC	Existing
	Scottsdale TMC	Existing
	Tempe TMC	Existing
	Tucson Transportation Control Center (TTCC)	Existing
New	NMDOT Statewide TMC	Existing
Mexico	Las Cruces TMC	Planned
	City of El Paso TMC	Existing
Texas	TranStar	Existing
	City of San Antonio TMC	Existing
	DOTD ATM/EOC Operations Center	Unknown
	DOTD Statewide Operations Center	Unknown
Louisiana	Orleans Parish Traffic Control Center	Unknown
	Jefferson Parish Traffic Control Center	Unknown
	District 2 Traffic Operations Center	Unknown
NC	District 6 Traffic Management Center	Planned
Mississippi	Alabama DOT Traffic Management Center	Planned
Alabama	COMTED Traffic Management Center	Planned
Alabama	MCTED Traffic Operations Center	Planned
	Bay County Transportation Management Center	Planned
	City of Gulf Breeze Traffic Management Center	Planned
	City of Penezola Traffic Operations Center	Existing
	City of Tellahassee Transportation Management Center	Existing
FI 1.	Ecombia County Traffic Management Conter	Existing
Fiorida	EDOT Director 2 Laborarilla DTMC	Existing
	EDOT District 2 Jacksonville KTWC	Diamas
	FDOT District 5 Escambia/Santa Kosa County KI	Planned
	Circle La Stallahassee RIMC	Planned
	City of Jacksonville Iraffic Management Center	Planned

Table 1-3. Traffic Management	Centers in	the I-10 Corr	idor
-------------------------------	------------	---------------	------

Table 1-4. ITS Elements in Source Architectures

Entity	AL	CA	FL	LA	MS	NM	TX
Alerting and Advisory Systems						x	
Archived Data Management	x	x	x	x	x	x	x
Archived Data User Systems		x	x	x		x	x
Asset Management		x	x			x	x
Border Inspection Administration						x	
Border Inspection Systems						x	
Care Facility			x	x		x	x
Commercial Vehicle		x	x	x		x	x
Commercial Vehicle Administration		x	x	x	x	x	x
Commercial Vehicle Check		x	x	x	x	x	x
Commercial Vehicle Driver			x				
Construction and Maintenance				x	x		
CVO Inspector			x				
Distribution/Logistics Management Provider						x	
DMV			x			8 TO A	
Emergency Management	x	x	x	x	x	x	x
Emergency System Operator	22.00		OTAL.	x		- 101. ⁴	
Emergency Telecommunications System	x			x	x		
Emergency Vehicle	x	x	x	x		x	x
Emissions Management			x		x		x
Enforcement Agency		x	x			x	x
Equipment Repair Facility			x			x	x
Event Promoters			x	x	x	x	x
Financial Institution			x	~s> 0	1227.0	x	x
Fleet and Freight Management		x	x	x	x	x	x
Freight Equipment		x	0161		2221	x	
Information Service Provider	х	x	x	x	x	x	x
Intermodal Freight Depot		x	x	x	x		x
Intermodal Freight Shipper					x	x	
Maintenance and Construction Administrative Systems		x	x				x
Maintenance and Construction Management		x	x	x		x	x
Maintenance and Construction Vehicle		x	x	x		x	x
Map Update Provider				x			12 40 12
Media		x	x	x	x	x	x
Medical Facility					x		
Multimodal Crossings			x				
Multimodal Transportation Service Provider		x	x	x		x	x
Other Archives	х			x	x	х	
Other CVAS		x	x		x	x	x
Other Data Sources			x				
Other Emergency Management	х	x	x	x	x	x	x
Other ISP	x	x	x		x	x	

Table 1-4. ITS Elements in Source Architectur

Entity	AL	CA	FL	LA	MS	NM	TX
Other Maintenance and Construction Management		x	x	x		x	
Other MCV		2324		Street.		x	
Other Parking						x	
Other Roadway		x				x	
Other Toll Administration		x	x				
Other Traffic Management		x	x	x	x	x	x
Other TRM					x		
Other Vehicle						x	
Parking Management			x	x	x	x	x
Personal Information Access		x	x	x		x	x
Rail Operations		x	x	x	x	x	
Remote Traveler Support		x	x	x		x	x
Roadway	x	x	x	x	x	x	x
Roadway (ITS Equipment)							x
Security Monitoring		x	x			x	
Shelter Provider				x			
Social Services Agencies			x				
Storage Facility						x	
Telecommunications System for Traveler Information			x				
Toll Administration		x	x	x			x
Toll Collection		x	x	x			x
Toll Systems							x
Traffic Management	x	x	x	x	x	x	x
Traveler Card		x	x			x	x
Travelers				x			x
Vehicle		х	x	x		x	x
Wayside Equipment			x			x	x
Weather Service		x	x	x	x	x	x
Yellow Pages Service Providers		x		x		x	x

1.6 User Needs Assessment Private Sector Input

As stated earlier, understanding the private sector's information needs is considered critical to the successful development and implementation of ITS projects for the National Freight Corridor. To understand what information commercial vehicle operators and other freight stakeholders using transportation services in the corridor currently find most useful, an extensive phone survey was undertaken. Specifically, the purpose of the telephone survey with truck companies and shippers along the I-10 Corridor was to:

- *define information and service needs for trucking companies operating along the I-10 Corridor*
- *identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor*
- examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor

1.6.1 Telephone Survey Process

Before any calls were made, a draft interview/survey guide was developed and distributed to members of the Technical Advisory Committee (TAC) for their review and comment. One member of the TAC sought input from a colleague in the trucking industry. The reviewer had few specific comments on the survey questions, but provided the following general comments:

> "Surveys are generally the last thing I am going to have time for during my busy day, and I don't think I am alone. Generally, these folks out here are not going to take

[surveys] unless they first are contacted personally by someone that they have a relationship with and that person can explain the value of this to them and request their time and opinion. After the personal request, you might even get some better responses by directing them to a web site to complete this set of questions, allow them to offer some comments such as this, and allow them to review the results of the survey at that web site and see what action is being taken as a result."

Following the review and revision of the survey instrument, TAC members were sent an e-mail message asking if they or anyone in their agency maintained a relationship with trucking companies or shippers through a committee or advisory group structure. None of the TAC members were aware of any existing truck- or freight-related committees in their agencies; however, several offered other agency personnel that might be able to assist in identifying carriers operating in the I-10 Corridor. One of these contacts proved to be extremely useful in providing the names of trucking companies using I-10.

The Mississippi DOT Law Enforcement Division was able to supply a list of motor carriers who had been stopped for safety and weight checks at one of two weight station facilities located on I-10 in the state of Mississippi. After checking the raw data file and removing duplicate and incomplete entries, a total of 422 complete entries remained, including phone contacts. The remaining full carrier records were distributed across the corridor states in the following manner:

Table 1-5. Survey Responses by State

State	Number of Carriers
Alabama	57
Florida	62
Louisiana	77
Mississippi	84
Texas	32

These carrier lists were used by several WSA regional offices to conduct phone interviews. Carriers in New Mexico, Arizona, and California were contacted using yellow pages listings.

As of April 13, 2007, approximately 300 carriers had been contacted, resulting in 27 completed surveys. A copy of the final survey/interview guide is included as Appendix B.

1.6.2 Web Survey Process

Due to the relatively low response rate using phone contacts, a somewhat shorter version of the phone survey was developed into a web-based survey using the "SurveyMonkey" web site. To communicate the need and purpose of the survey, an e-mail was sent to the state trucking association. The web survey form and e-mail appear as Appendix C.

Chapter 2

User Needs, Institutional Issues, and the Corridor Vision 2.1 Introduction

This chapter presents the transportation needs of the I-10 Corridor as identified by the corridor stakeholders. Identifying user needs is necessary to provide input to subsequent efforts in the development of a corridorwide intelligent transportation systems (ITS) architecture. User needs were identified through discussions with the stakeholder representatives and review of documents provided by stakeholder groups. The focus of the process is on those transportation needs that may be addressed by the application of ITS technologies.

For the I-10 Corridor ITS Architecture, user needs are defined as the reasons the stakeholders are participating in the ITS architecture process – or, more specifically, what stakeholders would most like to gain from this process. Identification of user needs began with a review of previous research. The review was intended to identify commercial vehicle congestion issues and travel time information needs on a corridorwide basis. Information gained from the review was then combined with information provided by I-10 stakeholders and information obtained from the various ITS architectures in the corridor. The result was a compilation of needs of I-10 freight corridor users.

The list of user needs was then used to develop the corridor ITS program and architecture. User needs that can be addressed by ITS technologies are mapped to elements of the National ITS Architecture such as User Services and Market Packages in this chapter. Institutional issues, including opportunities and barriers, are also identified, based on the identified user needs. Finally, this chapter defines the I-10 Corridor vision and supporting goals.

2.2 Urban Congestion and Impacts on Commercial Vehicles

Numerous studies have attempted to evaluate the impact of traffic congestion in the United States. A 1999 Federal Highway Administration (FHWA) study evaluated the costs of both scheduled (predictable) and nonscheduled (unpredictable) delay to motor carriers. The study concluded that while savings in transit time were valued at between \$144 and \$192 per hour, savings in unscheduled delay were even more valuable, as high as \$371 per hour.¹ A later Texas Transportation Institute (TTI) study noted the possibility that the increasing duration of periods of congestion could ultimately have serious financial impacts on motor carriers.²

In the 2005 Urban Mobility Report, authors David Schrank and Tim Lomax estimated congestion costs in the United States at 3.7 billion hours of delay annually, wasting 2.3 billion gallons of fuel.³ In the report, the authors ranked 85 urban areas in terms of their estimated annual delay per traveler (based on

¹ Valuation of Travel-Time Savings and Predictability in Congested Conditions for Highway User-Cost Estimation, NCHRP Report 431, National Academy Press, 1999.

² Evaluation of U.S. Commercial Motor Carrier Industry Challenges and Opportunities, Final Report. Federal Highway Administration, March 31, 2003. Available online at

http://ops.fhwa.dot.gov/freight/publications/eval_mc_industry/ind ex.htm.

³ David Schrank and Tim Lomax, *2005 Annual Mobility Report*. Texas Transportation Institute. Available online at http://mobility.tamu.edu.

daily commute in peak periods) and a "travel time index" (the ratio of travel time in peak periods versus travel time in free-flow conditions). Table 2-1 presents information for 12 urban areas along the I-10 Corridor. Three of the top 10 congested areas in the United States lie on the I-10 Corridor, when measured by annual delay per traveler; Los Angeles (including Long Beach and Santa Ana), Houston, Riverside (including San Bernardino), and Phoenix rank in the top 20. While the TTI congestion analysis does not specifically address trucking operations on the I-10 Corridor, it does indicate that congestion is a serious issue in many parts of the corridor.

Urban Area	Annua per Tr	l Delay raveler	Travel Time Index		
Along I -10	2003 Hours	Rank	2003 Value	Rank	
Los Angeles, CA	93	1	1.75	1	
Houston, TX	63	5	1.42	6	
Riverside, CA	55	9	1.37	14	
Phoenix, AZ	49	18	1.35	20	
Tucson, AZ	36	30	1.31	26	
Jacksonville, FL	34	32	1.18	48	
San Antonio, TX	33	33	1.22	35	
New Orleans, LA	18	54	1.19	42	
El Paso, TX-NM	18	54	1.17	52	
Pensacola, FL-AL	18	54	1.12	59	
Beaumont, TX	14	63	1.07	77	

In business environments, timely delivery of goods is important and congestion is a costly impediment to trucking company operations. One way to mitigate unpredictable trip times that often result from traffic congestion is to provide better information about traffic conditions and alternate routes. A number of previous efforts have examined the feasibility and attractiveness of advanced traveler information services for commercial vehicle operations/advanced traveler information systems (CVO/ATIS) that provide congestion, routing, and other travel information aimed specifically at the trucking industry. In 2003, the Minnesota Department of Transportation (Mn/DOT) funded a study that examined the status of CVO/ATIS deployments across the United States and the familiarity of trucking industry personnel with ATIS technologies and available information. The review of existing CVO/ATIS deployments found that only a few 511 systems offered CVO-specific information, limited to vehicle load and speed restrictions. In addition, the researchers found that as of 2003 only three CVO/ATIS projects had been operationally tested, including:

- FleetForward An operational test conducted in the I-95 Corridor during 1999-2000
- FleetOnline A web-based application for traffic and real time routing on the Gary-Milwaukee-Chicago Corridor
- Virginia DOT I-81 Truck Fleet Support Program

 a pilot test operated during summer 2002
 evaluated the usefulness of CVO-directed
 information during a major planned construction
 program⁴

The Minnesota study also conducted in-depth interviews with six major trucking companies with operations in the state. Key findings from the interviews included the following:

1. Information that is easily accessible, reliable, and up-to-the-minute is the most important aspect of traveler information.

⁴ Additional information about these systems can be found: http://www.its.dot.gov.

- 2. Improved reliability of the roads, lower operating costs, and safer deliveries are the key benefits of providing traveler information.
- 3. Truck size and weight restrictions, weather conditions, safety and security alerts, traffic conditions, and routing information based on driving conditions and restrictions are the most important types of traveler information needed from motor carrier companies interviewed.
- 4. Location, direction, and estimated travel time to consignee; information from the state when route restrictions have changed; a way to receive more information on detours, construction, and weather conditions; and directions for locations where travelers could stop and receive information and pamphlets on tourist and traveler information are other useful types of information that private companies would like to have offered.
- 5. Electronic roadside signs are the preferred method to receive traveler information by drivers. This method requires no effort from the driver to receive the information and it is directed at the drivers in the impacted region.
- 6. Better marketing materials, such as booklets or pamphlets, will help drivers make better use of information. Drivers can take these materials with them and consult them to better understand what information is available and how to use it.
- 7. DOTs or other agencies typically have a list of companies that operate commercial vehicles in certain areas. When the area is or will be affected by an event, a mass notice (e.g., e-mail) could be

sent to the companies affected in that area prior to the event.⁵

In 2001, University of California researchers conducted computer-aided phone interviews with more than 700 trucking companies operating in California to better understand the value and benefits of various types of traveler information to the trucking industry. The study focused on information delivery via Internet-enabled wireless devices. Thirty-six percent of the managers surveyed said that congestion was a serious or critically serious problem for their businesses. The authors concluded that the value of different ATIS information was largely dependent upon the type of trucking operation. "Locations of freeway incidents and lane closures," "weather information," and "travel times on alternative routes" were most frequently described as important information by the carriers.⁶

2.3 I-10 Motor Carrier Surveys

To gather specific information from freight transportation service providers using the I-10 Corridor, a phone and web-based survey of trucking companies located in states traversed by the I-10 Corridor was conducted. Figure 2-1 shows the distribution of survey respondents by state.

The responses highlighted in this section were recorded from telephone interviews conducted by the WSA team. The initial survey effort concentrated in March and April 2007 focused on Eastern and Gulf Coast areas of

⁵ Commercial Vehicle Operations/Advanced Traveler Information Systems: A Summary of National Practice. Prepared for Mn/DOT by TranSmart Technologies, Inc., June 2003, pg. 39.

⁶ Thomas Golob and Amelia Regan, *Trucking Industry Preferences* for Driver Traveler Information Using Wireless Internet-enabled Devices. 2003 TRB Annual Meeting CD ROM, pg. 5.

Figure 2-1. I-10 Trucking Company Respondents by State

another option for gaining additional input. The two survey instruments are found in appendices B and C.

2.3.1 Types of Carriers

To better understand how traveler information services might apply or be used by different sectors of the trucking industry, a brief description of several key industry segments are provided below.⁸

Truckload carriers do not base their business model on regular route services, but instead deliver shipments

directly to a recipient and try to pick up another truckload shipment at or

near the first delivery point for a "backhaul" load. Due to the direct delivery nature of the service, there is typically no need for terminals, distribution centers, or regularly scheduled routes for the carrier to remain competitive.

Less Than Truckload (LTL) and Small Package Carriers typically consolidate many smaller shipments from multiple shippers located in a common area or region, sort them at dock facilities according to common designation, and then line-haul trailers to a

destination dock for delivery. LTL shipments are usually less than 10,000 pounds per load. LTL

the I-10 Corridor. The majority of the carriers contacted in the initial round of surveys were generated from a list of carriers passing through permanent weigh stations along I-10 in the state of Mississippi. Using the list provided by Mississippi Department of Transportation (MDOT), a total of 221 carriers were contacted by phone, resulting in 35 completed survey responses. A second round of surveys was conducted in April and May 2007, focusing on states along the western portion of the corridor. Most of the contacts made in western states were generated by "Yellow Pages" directories. In total, more than 300 carriers were contacted by phone, resulting in 45 complete survey responses. Completed responses were received from carriers based in all corridor states except California.⁷

The survey team also developed an Internet version of the survey instrument. Internet responses were processed using the "SurveyMonkey" web site. The web link and a cover letter to state trucking associations asking for their assistance were distributed to members of the I-10 Technical Advisory Committee (TAC) as

⁸ Much of the information provided in the truck segment descriptions was provided by the American Transportation Research Institute (ATRI), and was adapted from the American Trucking Trends 2004, from the American Trucking Association.

⁷ Follow-up efforts to potential California respondents did not result in additional surveys. The survey team's experience suggests that this may indicate other recent survey efforts.

shipments require multiple terminal locations and are clustered according to a hub and spoke distribution network. Most LTL drivers are unionized, and generally paid by the hour.

Private Carriers are operated by businesses whose primary business is something other than transportation. Private carrier fleets may be operated by manufacturers, distributors, retailers, and other

businesses operating trucks as an internal value-added function primarily to meet their own business shipping needs. While private

truck fleets primarily serve a single company, private carriers are allowed sell unused backhaul capacity on a for-hire basis. Private fleets comprise the largest single segment of the trucking industry, representing nearly 76 percent of all trucks that are registered in the United States. Most private truck fleets are used in closed loop applications, allowing significant control of multistop scheduling. A private truck trip averages 71 miles, and most (75 percent) are less than 500 miles.

Bulk and Specialized Carriers transport specific types of goods including construction and military materials, oversize/overweight items, and hazardous materials. Many carriers have specialized commodities in addition to more traditional truckload goods. The specialized carrier market operates according to dedicated business segments and is often terminalspecific according to which materials are being transported (e.g., liquid and dry chemicals). The

specialized carrier market is characterized by closed loop operation and trucks often

operate with 50 percent empty miles. Tank trucks are often considered the most specialized type of carrier. They primarily haul bulk commodities such as petroleum products, chemicals, and intermediate products such as paint, solvents, and cement. More than 70 percent of tank trucks transport hazardous materials.⁹

Drayage carriers shuttle intermodal containers between ports, railroad terminals, local consolidation facilities, and shippers. Drayage carriers' business is focused on local transportation movements typically intracity or to regional intercity destinations. The demand for drayage carriers is derived from increased maritime and rail activity into/out of local ports. There is a high degree of variability in individual capabilities and specifications. Transportation efficiency is usually accounted for on a time-based rate structure and trailers are often owned by several different individuals.

⁹ National Tank Truck Carriers, About the Industry. Available online at http://www.tanktruck.net/links/index.html.

2.3.2 Truck Transport Services Offered by Respondents

Respondents were first asked to indicate the primary types of trucking services they provide. Figure 2-2 indicates a wide cross section of carriers that haul freight with different operating characteristics and highway infrastructure needs. Because many of the companies surveyed offer more than one type of service, the number of service type responses exceeded the number of carriers interviewed. "Truckload" (TL) services were the most common type of trucking service offered by carriers contacted, followed by "Lessthan-Truckload" (LTL) and "Other." Most of the survey respondents represented "for-hire" trucking firms that offer more than one type of service, primarily LTL or TL services. Specialty carriers (e.g., oil rigging, heavy equipment hauling, or hazmat transport) were the third most commonly referenced class of service. The "other" category included household goods movers, towing services, and several passenger transport service provides that completed the survey.

2.3.3 Number of Truck Assets by Respondent

The majority of the respondents that completed the survey were small- to medium-sized trucking companies. Overall, the size of the trucking firms responding to the survey operated on average 38 trucks. Forty-four percent of the respondents operated fewer than 25 trucks, and another 33 percent operated between 25 and 49 trucks. Only one respondent operated more than 200 trucks. Figure 2-3 shows the distribution of fleet sizes for responding carriers.

Figure 2-3. Number of Trucks per Company Surveyed

2.3.4 Current Technology

As shown in Figure 2-4, the majority of the respondents use two-way radio technologies as their primary means to communicate information to drivers en-route. Radio was chosen as the number one option by 37 respondents. Citizens' band (CB) radios where the most common type of radio reference, however "walkie-talkies" and "Nextel" were also referenced as a two-way radio technologies in current use. The next most common technology for

communicating with drivers was by cell phone. Eight respondents stated that cell phones were their primary means for communicating with drivers, while only three respondents indicated using on-board computers to communicate with drivers.

Figure 2-4. Communication Technologies Used by Operators

Figure 2-5. Carriers Providing Real Time Information by Carrier Type

2.3.5 Delays

The carrier survey asked respondents to name the most common reasons they experience delays when operating trucks on the I-10 Corridor. Not surprisingly, respondents reported that congestion caused by traffic volumes was the number one factor resulting in truck travel delays. The second most common response was delay due to traffic crashes or incidents, followed by construction delays. Figure 2-6 shows the counts of reasons for travel delays. Table 2-2 provides additional details regarding the responses that carrier representatives provided.

Table 2-2. Travel Delay Response Details from Carriers that Experienced Delays

Area of Congestion	Specific Comments
BW8 E to BW8 W	Construction on the west side, congestion and accidents on the east side (I -45 the divider)
El Paso to Mississippi	Bottleneck at BW8 at Eldridge where freeways converge , accidents within I-610 Loop, construction near Baytown, winter ice storms
Houston to Lafayette	Construction, incidents
Anahuac to TX/LA line	Construction
CA to Split with I-20 near Kent/Balmorhea	Accidents, windstorms (Las Cruces, NM to Lordsburg, NM)
Odessa to Phoenix	Congestion
Houston to Louisiana	Construction, traffic
SE states	Terminal turnaround delays
Grand Bay to Pensacola	High traffic volumes AM and PM, not enough lanes Grand Bay to Mobile
Louisiana	accidents, inspections, weather, congestion
Jacksonville to California	Rough pavement
Florida to Rte. 75	Louisiana bridges
SE Mississippi and Louisiana	Construction, recurring delays in New Orleans and Baton Rouge
El Paso to Houston	Traffic, construction zones west of San Antonio
San Antonio to Houston/ Del Rio	Construction, traffic, trucks hitting deer and hogs at night (going west)
Texas	Local SA traffic, construction, and accidents
California and Texas	Weather, breakdowns
El Paso to Phoenix/CA	Traffic in Phoenix, dust storms in NM
Deming to Lordsburg, NM	Terminal turnaround delays
Las Cruces to AZ state line	Weather-wind and dust storms
Long Beach to Ocean Spring	Rush Hour Congestion – I.H. 10 at 49
San Antonio to Jacksonville	DOT inspections

2.3.6 Real Time Information

About one-third of the responding carriers (13 of 45) indicated that they provide real time information to their drivers. To better understand the carrier segments most likely to be interested in technology applications, each carrier was assigned to a primary service category based on their responses and on their advertised services as described in web pages or telephone directories.

Figure 2-7 shows the portion of carriers by type that provide real time traffic information to drivers. The responses suggest an opportunity for carriers to use technology to assist in relaying information to their driver base; however, many carriers operate on slim margins, and are reluctant to invest in technology such as on-board computers that enhance their ability to transmit information.

Figure 2-7. Respondents Providing Real Time Information to Drivers

2.3.7 Travel Information

To evaluate the importance of various types of traveler information, carriers were asked which types of information were most important. Figure 2-8 shows a summary of responses. The most important and useful element was updated traffic conditions, followed by routing information and weather conditions. Although knowledge of traffic conditions ranked highest, the average rating was just 3.36 on a 5-point scale, suggesting that the need is not particularly critical. Carriers were also asked about timeliness and willingness to pay for each of the types of information queried through the survey. Additional information on the most popular types of information is provided in the following series of figures.

Figure 2-8. Important Traveler Information for Carriers Using I-10

2.3.8 Traffic Conditions

When carriers were probed about traffic condition information, most indicated that receiving traffic information from one to four hours in advance of the condition would provide the most usefulness. Figure 2-9 shows that 22 respondents stated that one hour is the necessary lead time to be aware of traffic conditions and 11 respondents indicated that four hours was the necessary advanced notice. Figure 2-10 shows that when asked about willingness to pay for real time traffic condition information, slightly less than one-half of the for-hire carrier segments of the trucking industry indicated they would be willing to pay for reliable, timely traffic information.¹⁰

¹⁰ The number of responses to the question regarding willingness to pay for information services was lower than for other questions due to the position of the question at the end of the survey, and some respondents choosing not to complete the entire survey. Thirty-seven responses were received to the willingness to pay questions.

Figure 2-10. Willingness to Pay for Traffic Condition Information by Carrier Type

2.3.9 Routing Information

In addition to knowing where traffic congestion exists, carriers were also interested in knowing how to get around or avoid traffic congestion. Figure 2-11 shows that just over one-third of the responding carriers indicated a willingness to pay for routing information to avoid traffic congestion. Alternate routing information was most important to truckload carriers and to passenger services.

Figure 2-11. Carriers' Willingness to Pay for Routing Information by Carrier Type

2.3.10 Weather Information

During the development of the ITS Concept of Operations for the I-10 Corridor, weather events were highlighted as a major factor contributing to major delays along the corridor. Hurricanes and fog have been blamed for major devastation and multiple vehicle crashes on the eastern end of the corridor, while earthquakes, dust storms, and snow storms have created major havoc in the mid and western end of the corridor. Unsurprisingly, weather condition information ranked high among carriers surveyed as important information. Figure 2-12 and Figure 2-13 show carriers' responses to timeliness and willingness to pay for weather-related information. While many believed weather information to be important, relatively few were willing to pay for the information. One possible reason that carriers are unwilling to pay for weather information is that it has become more readily available through various media outlets.

Figure 2-12. Timeliness of Weather Information

Figure 2-13. Willingness to Pay for Weather Condition Information by Carrier Type

2.3.11 Truck Size and Weight Information

Transmission of truck size and weight restrictions was not considered as critical as other types of time-sensitive data. Relatively few carriers were willing to pay for such information. This may suggest that information on size and weight restrictions is more appropriate for distribution via a web site. Figure 2-14 and Figure 2-15 summarize the timeliness and willingness to pay for size and weight restrictions.

Figure 2-14. Transmission of Truck Size and Weight Information

2.3.12 User Fees for Travel Information

The responses from the carriers surveyed indicated a willingness to pay for information pertaining to traffic conditions, weather conditions, and routing information. Figure 2-16 shows that 16 respondents indicated that they are willing to pay for traffic conditions information and 13 respondents are willing to pay for weather conditions and routing information.

Figure 2-16. Overall Summary of Willingness to Pay

2.3.13 Technology Use

Respondents found road signs to be the most effective technology for conveying information to operators. Figure 2-17 shows the rank of the various technologies in the survey. Road signs scored an average of 3.12 on a 4-point scale of effectiveness. Highway advisory radio followed, averaging 2.61. Dial-in information systems for drivers averaged 2.39.

Figure 2-17. Most Effective Technology used by Carriers Surveyed

2.3.14 Key Survey Findings

The need for current traffic condition information stood out as one of the most important elements of travel information to the surveyed carriers. The needed traffic information includes both accident and incident information and traffic congestion information, and typically includes details of particular occurrences and potential delays along the corridor.

The ability for carriers to obtain this information is critical for carriers to satisfy customer delivery requirements. Carriers were generally willing to pay for services that can transfer this information effectively. However, many carriers currently do not have extensive access to newer technologies. Companies surveyed reported a high dependence on CB radio to convey information to operators. CB radio is often the quickest method for drivers to obtain travel information, due to equipment familiarity and ease of access.

Limited technologies can result in information gaps within a carrier. Information that is of immediate value to an operator can be even more valuable at the dispatch level. Getting this information sooner to multiple levels of the freight carrier has the potential to enable companies to take a proactive approach to rerouting freight. Dispatchers could then relay this information to the drivers using a variety of technologies, including on-board computers, radios, or other methods.

2.4 Existing User Needs from Other Architectures

The process of identifying user needs began with assembling the known user needs from the existing ITS architectures along the I-10 Corridor. Those needs were identified through stakeholder input in the development of the respective statewide and regional architectures, and have been reviewed to emphasize those relating to freight transportation. Needs that are not applicable to the I-10 Freight Corridor, such as most of the public transportation needs, were not included in the corridor architecture.

In addition to needs previously identified, additional needs were identified through the user input portions of the current study. Many of these reflect needs that evolved or were identified subsequent to the completion of the state ITS architectures. Additional sources of needs included those identified in the initial National I-10 Freight Corridor Study Final Report, (February 2002), CVISN documents from the coalition states, and state DOT participation in the study technical committees.

Table 2-3 summarizes the needs for the I-10 Freight Corridor that were identified from the existing ITS architectures and from stakeholder discussions, surveys, and interviews. The ITS needs in the I-10 Corridor are summarized and categorized into functional areas, and are reflected in the complete I-10 Corridor ITS Architecture document. Needs shown in Table 2-3 are not listed in order of priority or ranking.

Table 2-3. I-10 Freight Corridor ITS Needs

Institutional	1.	Identify keeper/manager of the corridor ITS architecture
Needs (IN)	2.	Develop and use a process addressing/aligning ITS project requests with each project's
		relevance and compliance with the local/regional architecture
	3.	Coordinate regional/state agencies to resolve transportation issues
	4.	Develop memoranda of understanding to facilitate data sharing and agency roles
	5.	Develop common ITS planning objectives to better coordinate ITS efforts along the corridor
	6.	Improved coordination between traffic management agencies and emergency response
		agencies for evacuation, traffic data exchange, and traveler information purposes
	7.	Effective communications between all state and local agencies in the corridor
Travel and	1.	Expand deployment of centralized traffic management systems in parts of the corridor
Traffic	2.	Improve and expand data collection network for traveler information, planning, and operations
Management	3.	Integrated transportation data management in the corridor (traffic data, CCTV, CMS,
Needs (TTM)		incident management, etc.)
	4.	Improve traffic control in major cities and towns
	5.	Real time condition information of corridor roadways for traffic managers
	6.	Improved safety and homeland security efforts throughout the corridor
	7.	Improved traveler information on I-10, primary routes, and other strategic locations
	8.	Automated incident detection and management system for I-10 and primary routes
	9.	Improved incident response coordination
	10.	Improve interagency notification for traffic control and IM ability to provide travel
		information through personal electronic devices
	11.	Coordination of congestion management strategies
Commercial	1.	Overweight vehicle detection systems
Vehicle	2.	Improved safety assurance at ports of entry
Operations	3.	Real time, en-route weather information
Needs (CV)	4.	Credentials administration and verification
. ,	5.	More effective size/weight enforcement
Emergency	1	Improved emergency response coordination
Management	2	Emergency response data transfer
Needs (FM)	3	Interoperable communications between local police/fire/rescue
Treeds (EIVI)	5.	
Information	1.	Ability to share relevant information (e.g., traffic data, CCTV, CMS, incident management,
Management		etc.) across multiple jurisdictions (IM-1)
Needs (IM)		
Maintenance	1.	Wide distribution of road closure plans (e.g., media coverage) (MC-1)
and	2.	Better management of maintenance fleets and their operations in real time (MC-2)
Construction	3.	Additional information and traffic management capabilities in work zones for long-term
Operations		construction projects (MC-4)
Needs (MCO)		

2.5 User Services

The FHWA has defined eight user service bundles as part of the ITS architecture. User services are functional areas that a stakeholder can identify as services in which they are interested. The user service bundles make it relatively easy for a stakeholder to focus on areas that are most relevant to their business. Table 2-4 provides an overview of the user service bundles. As shown in the table, the applicability of each user services bundle to the I-10 Freight Corridor was determined in consultation with technical representatives from each of the eight corridor states.

The focus of these services is generally on the longerdistance and freight-oriented trips. As incident management, traveler information, and other areas benefit all travelers (including freight), they were ranked higher. While traffic signals and intersection control are not typical of interstate travel, the commercial vehicles will have to use these services to get in and out of ports and border crossings and will use them when making stops along the way. They are included here, but at a lower priority level.

2.6 Market Packages

Market packages provide an accessible, service-oriented perspective to the National ITS Architecture. Market packages collect one or more equipment packages that must work together to deliver a given transportation service and the architecture flows that connect them and other important external systems. They are tailored to fit, separately or in combination, real-world transportation problems and needs, identifying the pieces of the physical architecture that are required to implement a particular transportation service. The National ITS Architecture provides a menu of 91 different market packages bundled into eight market package bundles. Based on the ITS needs and the existing/planned ITS systems, a set of market packages was selected for the I-10 Corridor ITS Architecture. The selected market packages are listed in Appendix D.¹¹

¹¹ National ITS Architecture, Version 6.0

Table 2-4. I-10 User Services

User Service Bundle/User Services	Applicability to I-10		
Travel and Traffic Management			
Pre-trip Travel Information	High		
En-route Driver Information	High		
Route Guidance	Medium		
Ride Matching and Reservation	None		
Traveler Services Information	Medium		
Traffic Control	Medium		
Incident Management	Medium		
Travel Demand Management	High		
Emissions Testing and Mitigation	Medium		
Highway Rail Intersection	Medium		
Public Transportation Management			
Public Transportation Management	None		
En-route Transit Information	None		
Personalized Public Transit	None		
Public Travel Security	None		
Electronic Payment			
Electronic Payment Services	High		
Commercial Vehicle Operations			
Commercial Vehicle Electronic Clearance	High		
Automated Roadside Safety Inspection	High		
On-board Safety and Security Monitoring	High		
Commercial Vehicle Administrative Processes	High		
Hazardous Materials Security and Incident Response	High		
Freight Mobility	High		
Emergency Management			
Emergency Notification and Personal Security	High		
Emergency Vehicle Management	Low		
Disaster Response and Evacuation	Medium		
Advanced Vehicle Safety Systems			
Longitudinal Collision Avoidance	Medium		
Lateral Collision Avoidance	Medium		
Intersection Collision Avoidance	Low		
Vision Enhancement For Crash Avoidance	Medium		
Safety Readiness	Medium		
Pre-crash Restraint Deployment	Medium		
Automated Vehicle Operation	Medium		
Information Management			
Archived Data	High		
Maintenance and Construction Management			
Maintenance and Construction Operations	High		

2.7 Institutional Issues

With eight states and numerous metropolitan areas throughout the length of the corridor, any one region may have significant institutional issues relative to the deployment of ITS. This report is not intended to go into detail of any one area. The issues identified in this section are those relative to the corridor – either its entire length or critical sections. Some areas of the corridor may not experience select issues identified in this report. Others may experience additional issues that are not identified in this report. The issues are organized into opportunities and barriers. Opportunities represent potential future collaboration issues. Barriers represent obstacles that must be overcome to realize the opportunities.

2.7.1 Opportunities

Opportunities are defined as new areas of cooperation or development, such as the ability to integrate systems, share information, cooperate in seeking funding, etc. Opportunities may be potential projects or efforts that can benefit the corridor. Opportunities may not apply equally across the entire length of the corridor, though each is likely to have the potential for benefiting more than just spot locations. The initial opportunities identified include the following:

Agreements to share information: Both real time and archived information are important to a wide variety of stakeholders. Agreements to share that information can be either informal or formal. For example, a commitment by each agency to upload full road closures on I-10 to a web site can be done informally. The occurrences are sporadic and the cost to each agency is minimal. Alternatively, the commitment to provide real time traffic detector data to a central information source may require software programming and ongoing communication costs. In this case, a formal data sharing agreement is more appropriate

Creating a clearinghouse: Advanced warnings of major incidents and weather related roadway issues can be of great value to I-10 users. A central clearinghouse of data can help facilitate delivery of this information. Development of this clearinghouse can be accomplished in a variety of ways, with varying impacts and commitments from each agency, but the creation of this clearinghouse will be important for many additional future projects.

Creating a corridor coalition: The I-10 Corridor currently operates under a pooled-fund study status. Establishment of a formalized corridor coalition will allow the group of states more flexibility and opportunities to jointly pursue many new projects.

Seeking funding: Federal policy currently encourages states to approach problems on a corridorwide level. For ITS projects, federal agencies have made it clear that their intent is to promote interjurisdictional cooperation for projects where ITS has demonstrated clear benefits. As a corridor, the states will enjoy more numerous opportunities to pursue and receive funding for new projects with diverse beneficiaries.

2.7.2 Barriers

Barriers are defined as known or anticipated issues that must be overcome in order to achieve the opportunities. Barriers are not to be considered as fatal flaws. There are always ways to overcome barriers. Known barriers to achieve the aforementioned opportunities include the following:

Parochialism: Cohesion in any coalition results from the consensus that participation results in greater benefits than can be achieved by working independently. Participation is unlikely if there is little or no perceived benefit. Through the I-10 Steering Committee, all the coalition member states agreed to plan and implement projects that will have corridorwide benefits. Each state will also continue to pursue their own individual projects, as will the various stakeholders. The full impact of parochialism would be felt if a state were to determine that their interests are best served by not participating in the corridor effort. With some level of participation from all eight states, this barrier can be largely mitigated. It is expected that a healthy corridor will go through cycles, and that each region and stakeholder will go through varying levels of corridor activity, while continuing to work together toward the long-term vision.

Pooled-Fund Status: At the conclusion of this study in December 2007, the I-10 Freight Corridor is organized as a pooled-fund study. One of the opportunities listed above was the possibility of developing a more formalized corridor organization. The current status is both a barrier and an opportunity, as the pooled-fund study group is unlikely to continue indefinitely. Whether the end result is a fully organized corridor such as I-95, or a consortium such as CARS (Condition Acquisition and Reporting System), the current pooled-fund status is, by design, destined to result in either a transition into a different organization or to dissolve when its work is complete.

Lack of Funding: As noted in the Concept of Operations Report for the I-10 Freight Corridor,

numerous ITS project needs were identified in the corridor. Addressing these needs would result in improved goods movement, but funding for these projects has not yet been identified. As the projects are multistate efforts, federal funds are especially critical to their implementation. Securing additional federal funding to aid in the deployment of projects should be a primary focus of the I-10 Freight Corridor's future efforts. The I-95 Coalition provides a useful initial template for corridor organization, and also illustrates many of the potential benefits.

Project Relevance: As the I-10 Freight Corridor extends across eight states, it is likely that few projects will be universally applicable across the entire corridor. Many will benefit large portions of the corridor, while others will have a more regional or local emphasis. Projects proposed and endorsed by the corridor group, however it is ultimately organized, should be relevant to multiple regions and jurisdictions. Even projects that are deployed in a small section for the first deployment should be planned to be relevant to greater portions the corridor, and should be deployed in a manner that promotes additional deployment and integration. Projects where the focus and benefits are highly localized should be pursued by the states and metropolitan planning organizations (MPOs) outside of the corridor framework.

2.8 Corridor Vision

The corridor vision is a brief statement of the organization's overall purpose, and the reason for the organization's existence. As of this writing, the corridor states have proposed a vision with the goal of improving freight movement along the entire I-10

Corridor, across all jurisdictions, using both operational and capital improvements.

2.9 Goals and Objectives

The goals and objectives result from the needs and issues outlined and identified above. Goals are aims that support fulfillment of the vision and mission, while objectives are the steps and actions that are necessary to accomplish a particular goal. In planning ITS systems, defining goals and objectives helps to ensure that development of the corridor ITS program stays focused on user needs.

Table 2-5 lists the corridor's goals for freight movement, summarized by functional area. A full list of the goals and objectives as identified based on the needs described above may be found in Appendix E, organized according to their function.

Table 2-5. ITS Program Goals

Area	Goals
Administration/ Planning/Policy	• Ensure the continued use and maintenance of the I-10 Corridor ITS Architecture
	• Improve coordination between regional and state agencies to resolve transportation issues
	 Create a corridor to unify the I-10 states and to allow the I-10 states more flexibility and opportunities to jointly pursue projects
Field	• Finalize deployment of centralized traffic management systems in selected areas of the corridor
Infrastructure	• Enhance/upgrade/expand coverage of sensors along select areas of the I-10 Corridor
Operations	• Improve communications and coordination between traffic management agencies and emergency response agencies for evacuation, traffic data exchange, emergency response coordination, and traveler information purposes
	 Improve communications and coordination between traffic management agencies, local government, and law enforcement
	Enhance/streamline credentials administration and verification including at ports of entry
	• Enhance safety
	Enhance security
	Reduce congestion
Information	Improved use and coordination of existing field infrastructure
	Promote exchange of relevant information along the entire corridor
	Provide services to aid commercial vehicle traffic throughout the corridor

Chapter 3 Short-Term Program Development 3.1 Introduction

An ITS architecture is intended to be used as a planning tool to facilitate the eventual deployment of intelligent transportation systems (ITS). Federal Highway Administration (FHWA) rules require that a regional ITS architecture be in place for projects that receive federal funds.¹²

Ideally, an ITS architecture directly supports a related program of ITS projects. A number of state and regional plans have already been developed in the I-10 National Freight Corridor, incorporating a variety of ITS projects. This chapter discusses the development of the I-10 National Freight Corridor's ITS program. The program focuses on improving freight movement in and through the corridor, and emphasizes multistate or regional efforts. To help the corridor move ahead quickly, there is a particularly strong emphasis on the short-term program.

3.2 Definition of Projects

An ITS architecture typically addresses needs and projects that extend out 10 to 20 years. The time frame of the I-10 Corridor Architecture is currently defined as 10 years. The projects developed for the program are also over a ten-year time frame. These projects are representative of a contemporary expectation of what will be built over this term. As the architecture is used, new systems will be developed and deployed. As this happens, the architecture and the ITS program should evolve as well, with the infrastructure reflecting changes both in the operational and planned systems.

A project is typically first defined as a functional concept. For example, a traffic management center (TMC) might be viewed as one project, although several distinct projects related to this TMC will likely be deployed over the span of the ITS architecture. Several generations of a system can be anticipated, along with several project expansions. The functions and connections identified in the ITS architecture are anticipated over the long term and may be realized through multiple phases and projects to achieve a full level of functionality.

This short-term ITS program was developed with the input of technical committees that included representatives from the corridor states' transportation departments. The initial corridor program is intended as a series of projects that may be separated by phases or deployments. The program includes a number of "early winner" projects that can be quickly implemented and quickly demonstrate results.

3.3 Definition of Program

The intent of this initial program is not to duplicate existing funding programs, such as transportation improvement programs (TIPs). Instead, the program includes various project concepts arranged into distinct, procurement-ready portions. The program is planned to be sufficiently flexible to allow various components to be procured and implemented as funding becomes available, while retaining the vision of how the various components will be tied together

¹² FHWA Rule 23 (CFR 940.9) specifies that "(a) A regional ITS architecture shall be developed to guide the development of ITS projects and programs and be consistent with ITS strategies and projects contained in applicable transportation plans."

into a system that provides greater utility than just the sum of the components.

In the program, the individual project concepts have been identified and defined in consultation with various corridor stakeholders. Project cost estimates provided represent planning level estimates that will need to be refined as the projects are included in state plans for implementation. An initial phasing plan is also identified in the initial program.

The projects identified in the program plan are categorized into the following phases:

- Early Winners projects that can be implemented almost immediately
- Short Term projects that can be implemented within the first two years of the program
- Medium Term projects that are in the three- to five-year horizon for implementation
- Long Term projects that are at least five years away from being implemented

It is anticipated that the projects will be implemented in this sequence/order over the term of the program.

3.4 Projects by Market Package

The projects described in this section are defined as part of a market package. Appendix F illustrates how the various goals and objectives of the corridor are met by these projects. Projects will be defined in greater detail through the systems engineering process and matched to other plans and architectures regardless of how they match up to these initial market packages.

For each market package area, only those market packages identified in Chapter 2 will be shown. There may not be a project to meet every individual market package, but the intent will be to meet the majority of the identified goals.

3.4.1 Archived Data Management

These projects relate specifically to the collection, maintenance, and usage of transportation data in an ITS environment. The intent is to create an initial high level archiving system that starts collecting data along the entire corridor. As the various systems evolve, so will the archiving efforts. An archive must be user friendly and support the various stakeholders throughout the corridor, both public and private. These projects are identified to address most of the recurring congestion problems that the stakeholders identified. The vast majority of the program projects fall into this category. Many of these projects are intended to build upon existing or planned efforts – either building out the infrastructure, or completing connections. New and innovative uses of the traffic management tools are also included in this section.

Market Package	Project Code	Project Description
AD1 - ITS Data Mart	ADM2.5.1	Plan/design a corridorwide data archiving system
	ADM2.5.2	Build the initial corridor archiving system
AD2 - ITS Data Warehouse	ADM2.5.1	Plan/design a corridorwide data archiving system
	ADM2.5.2	Build the initial corridor archiving system
AD3 - ITS Virtual Data Warehouse	ADM2.5.3	Evolution 1 of archiving system

3.4.2 Traffic Management

Market Package	Project Code	Project Description
ATMS01 - Network Surveillance	INF1.1.1	Deploy test Wi-Fi for emergency response along
	INIEL 1.2	selected sections of corridor
	INF1.1.2	Deploy TMC 2
	INF2.1.1	Create a web site with links to web sites for all states
		within the corridor
	INF2.2.1	Integrate weather information into corridor web site
AI M502 - Probe Surveillance	OP\$4.5.1	Use cell phones for probes in rural New Mexico to generate travel times for use in incident information sharing
	OP\$4.5.2	Use cell phones for probes in rural Texas to generate travel times for use in incident information sharing
	OP\$4.5.3	Increased use of license plate readers in Florida
ATMS03 - Surface Street Control	OP\$1.1.1	Pilot test integrated signals in State 1
	OPS2.2.8	Pilot test a rural alternate route plan for I-10
	OP\$2.2.9	Pilot test an urban alternate route plan for I-10
ATMS04 - Freeway Control	INF1.1.1	New Gulfport TMC
17	INF1.1.2	Deploy TMC 2
	INF1.1.3	Deploy TMC 3
ATMS06 - Traffic Information	INF1.1.1	Deploy test Wi-Fi for emergency response along
Dissemination	INF1.2.1	Deploy a project that provides ability to get 511
		information across multiple states from one state
	INF1.2.2	Deploy 511 corridor information in all corridor states
ATMS07 - Regional Traffic Control	INF2.4.2 ADM1.1.1	Create an instant messaging network I-10 Project Management Contract
0	INF1.3.1	Deploy fiber connections to provide state to state connectivity where appropriate
	INF2.1.1	Create a web site with links to web sites for all states within the corridor
	INF2.4.1	Establish a means of sharing information between TMCs along the corridor
	INF2.4.3	Create a "war map"
	OP\$2.1.1	Add major special event information to the corridor web site
	OP\$2.1.2	Develop a smart planned special event system for the corridor
	OPS2.1.3	Pilot test a smart planned special event system in State 1
	OPS2.1.4	Pilot test a smart planned special event system in State 2
ATMS07 - Regional Traffic Control	OPS2.2.1	Integrate REGIONAL TMC with two major regional agencies
	OP\$2.2.2	Integrate REGIONAL TMC with two major regional agencies
	OPS2.2.3	Integrate REGIONAL TMC with minor local agencies
	OPS2.2.4	Integrate REGIONAL TMC with minor local agencies
	OPS2.2.5	Study in-state integration (FL, TX, CA, AZ) vs. statewide TMC (MS)
	OP\$2.2.6	Biloxi/Mobile TMC integration
	OPS2.2.7	Mobile/Pensacola TMC integration
	OPS2.2.8	Pilot test a rural alternate route plan for I-10
ATMSON Traffic Insident	OP\$2.2.9	Pilot test an urban alternate route plan for 1-10
Management System	ADM2.1.1	Implement Quick Clearance policies (shoulder or in-lane?)
	ADM2.1.2	Enact legislation to limit liability for moving vehicles
	ADM2.1.5	Move-it laws Move over laws for emergency responders
	ADM2.1.5	Create standard policies and procedures for planned special events
	OP\$1.2.1	Pilot test automated incident detection in State 1
	OP\$1.4.2	Create a Gulf region incident management system
	OP\$6.2.1	Increase capability, range, and size of existing service patrols
ATMS10 - Electronic Toll Collection		

These projects are identified to address most of the recurring congestion problems that the stakeholders identified. The vast majority of the program projects fall into this category. Many of these projects are intended to build upon existing or planned efforts either building out the infrastructure, or completing connections. New and innovative uses of the traffic management tools are also included in this section.

JATIONAL

3.4.3 Public Transportation

As noted in Chapter 2, it was determined that public transportation projects are not likely to play a significant role in the freight corridor architecture. Public transportation projects may be referenced in projects such as regional traveler information or emergency management, but the typical public transportation market packages are not considered to be applicable to the freight corridor program.

3.4.4 Traveler Information

Market Package	Project Code	Project Description
ATIS1 - Broadcast Traveler Information	INF1.2.1	Deploy a project that provides ability to get 511 information across multiple states from one state
	INF1.2.2	Deploy 511 corridor information in all corridor states
	INF2.2.1	Integrate weather information into corridor web site
	INF2.3.1	Deploy test Wi-Fi for emergency response along selected sections of corridor
	INF2.6.1	Enhance coordination with media through web site
	OPS4.2.3	Integrate smart work zone into corridor web site
	OPS4.2.4	Integrate smart work zone into TMC 1
ATIS2 - Interactive Traveler Information	INF2.1.2	Enhance the existing web site with an e-mail alert system
	INF2.1.3	Provide upgrades and enhancements to the corridor web site
	INF2.3.1	Deploy test Wi-Fi for emergency response along selected sections of corridor
	INF2.5.1	Deployment of 511 in states without 511
	INF2.5.2	Multistate coordination and seamless integration
ATIS3 - Autonomous Route Guidance		
ATIS4 - Dynamic Route Guidance		
ATIS5 - ISP-Based Route Guidance	INF3.2.1	Provide localized and regional weather and traffic at parking facilities
ATIS6 - Integrated Transportation Management/Route Guidance		
ATIS7 - Yellow Pages and Reservations	INF3.1.1	SmartPark demonstration in State 1
ATIS7 - Yellow Pages and Reservations	INF3.1.2	SmartPark demonstration in State 2
ATIS8 - Dynamic Ridesharing		
ATIS9 - In-Vehicle Signing		

These projects emphasize sharing of real time information. Some of the projects relate more to third party information providers, such as web providers and handheld and mobile content providers. Initial work on these projects typically emphasizes development of a corridorwide traveler information hub, as well as projects that can link to that hub and feed off of it. Also included are projects specifically aimed at commercial vehicle owners and operators, such as parking facility projects.

3.4.5 Vehicle Safety

The following vehicle safety market packages were initially identified:

- AVSS01: Vehicle Safety Monitoring
- AVSS02: Driver Safety Monitoring
- AVSS03: Longitudinal Safety Warning
- AVSS04: Lateral Safety Warning
- AVSS06: Pre-Crash Restraint Deployment
- AVSS07: Driver Visibility Improvement
- AVSS08: Advanced Vehicle Longitudinal Control
- AVSS09: Advanced Vehicle Lateral Control

All of these market packages are in-vehicle systems, and are typically procured by the private sector for use in vehicles. They should be considered part of the ITS architecture, although there are currently no specific public sector projects that match these market packages. The corridor will continue to monitor the deployment of these systems in private sector fleet vehicles and will modify the architecture and the program as necessary to accommodate these systems. These efforts may be integrated into other infrastructure, particularly with respect to the VII program.

3.4.6 Emergency Management

Emergency Management (EM) market packages in the architecture largely reflect efforts that are more related to on-road management and not back office or administrative work.

These projects focus on emergency management agencies and their relation to commercial vehicle operators. Along the Gulf Coast, the emphasis is on coordination with these entities during and after hurricane threats. In the southwest, military and border issues often lead to coordinated efforts between various government agencies and commercial vehicle owners, operators, and shippers.

Market Package	Project Code	Project Description
EM01 - Emergency Call-Taking and Dispatch		
EM02 - Emergency Routing		
EM03 - Mayday Support	OPS4.4.1	Pilot test automated crash reporting with a private service provider
	OPS4.4.2	Combine automated crash reporting with material load information
EM04 - Roadway Service Patrols	OPS1.4.1	TIMTOW- private sector certification for towers
	OPS6.2.1	Increase capability, range, and size of existing service patrols
	OPS6.2.2	Expand use of Rapid Incident Scene Clearance (RISC) in Florida
	OPS6.2.3	New service patrols in location A
	OP\$6.2.4	Pilot test video from service patrol to TMC in State A
EM05 - Transportation Infrastructure Protection	INF1.2.1	Identify key assets along corridor that are not covered as part of an urban TMC
	INF1.2.2	Integrate key asset surveillance into existing TMC
	INF1.3.1	Deploy fiber connections to provide state to state connectivity where appropriate
EM06 - Wide-Area Alert	INF2.1.1	Create a web site with links to web sites for all states within the corridor
EM07 - Early Warning System		
EM08 - Disaster Response and Recovery	ADM2.4.1	Share response plans and determine areas for increased coordination
	OPS1.4.3	Share communications infrastructure with emergency providers
	OP\$1.5.1	Provide EM training for DOT staff throughout the corridor
EM09 - Evacuation and Re-entry Management	ADM2.4.1	Share response plans and determine areas for increased coordination
EM10 - Disaster Traveler Information	OPS1.3.2	THETA - Implement basic capabilities with state of Mississippi, implement 'almost real time' map updates with traffic and weather
	OPS1.3.3	THETA - Collaborate with all sponsoring states to achieve capabilities, economies of scale, and system architectures

3.4.7 Commercial Vehicle Operations

These projects relate to commercial vehicle operations, with the focus remaining primarily on the public sector and how it interfaces with the private sector. As more and more port operations are privatized, the program anticipates ways to help improve both internal port operations and the administrative organizations that commercial vehicles deal with.

Market Package	Project Code	Project Description
CVO01 - Fleet Administration	OP\$5.1.1	Set up committee to coordinate with businesses to look for joint opportunities
CVO02 - Freight Administration	ADM2.3.1	Multistate OW/OS vehicle permit (standard
	ADM2.3.2	Pilot test for one-stop credentialing along the Gulf Coast
	ADM2.3.3	Create a corridorwide credentialing center
	ADM2.3.4	Pilot test OS/OW automated permitting across multiple states
	ADM2.3.5	Add automated permitting to a corridorwide
	OP\$5.1.1	Set up committee to coordinate with
		businesses to look for joint opportunities
CVO03 - Electronic Clearance	OP\$3.1.1	Horizon project with port of Jacksonville
CVO04 - CV Administrative Process	ADM2.3.1	Multistate OW/OS vehicle permit (standard envelope)
	ADM2.3.2	Gulf Coast
	ADM2.3.3	Create a corridorwide credentialing center
	ADM2.3.4	Pilot test OS/OW automated permitting across multiple states
	ADM2.3.5	Add automated permitting to a corridorwide credentialing center
	OP\$5.1.2	Increase use of credentialing and checking
CVO05 - International Border Electronic	OP\$3.4.1	around petroleum facilities along 1-10 Coordinate with federal agencies to ensure
Clearance	OI by AI	consistent operations of ports and crossings along border and through ports - admin contract
	OP\$3.4.2	Deploy FAST at locations A, B, C, and D
	OP\$3.4.3	Deploy other future project at locations A, B,
	OP\$3.4.4	Expand combined points of entry program
CHOOL MILLING	DIFACI	across all Gulf states
CVO06 - Weigh-In-Motion	INF2.5.1	Pilot lest WIM in Mississippi
	INF2.5.2	Pilor Test WIM in State 2
	INF2.5.4	Integrate WIM with TMC 1
	INF2.5.5	Integrate WIM with TMC 2
	INF2.5.6	Integrate with PrePass
	INF2.6.1	Enhance coordination with media through web sit
	OP\$3.2.1	Deploy WIMs at all Florida Gulf Coast ports
CVO07 - Roadside CVO Safety	INF2.6.1	Enhance coordination with media through web sit
	OPS4.1.1	Deployment of 511 in states without 511
CVO08 - On-board CVO and Freight Safety and Security	OP\$3.3.1	Pilot test HAZMAT routing database across multiple states
	OPS4.4.1	Pilot test automated crash reporting with a private service provider
	OPS4.4.2	Combine automated crash reporting with
CVO09 - CVO Elect Maintenance	-	material load information
CVO10 - HAZMAT Management	OP\$3.3.2	Create initial corridor management center HAZMAT database
CVO11 - Roadside HAZMAT Security	OP\$3.3.2	Create initial corridor management center
Detection and Mingaton	OPS4.3.1	Increased training for emergency responders along I-10 (nuclear in the SW/petrochemicals
		in the Gulf Coast region)
CVO12 - CV Driver Security Authentication	OP\$3.4.1	Coordinate with federal agencies to ensure consistent operations of ports and crossings
		along border and through ports - admin contract
	OP\$3.4.2	Deploy FAST at locations A, B, C, and D
	OP\$3.4.3	Deploy Other Future Project at locations A, B, C, and D
	OP\$3.4.4	Expand combined points of entry program across all Gulf states
	OP\$3.5.1	Work with federal agencies to create a secure commercial vehicle credentialing database
	OP\$3.5.2	Pilot test of roadside safety inspection in State 1
	OP\$3.5.3	Apply roadside safety application across
CVO13 - Freight Assignment Tracking	OP\$3.3.1	Pilot test HAZMAT routing database across
		multiple states

3.4.8 Maintenance and Construction Management

Information on maintenance and construction was highly desired by the commercial vehicle industry in the surveys conducted as part of Chapter 2. These projects focus on efforts to inform and improve operations throughout these work zones.

Market Package	Project Code	Project Description
MC03 - Road Weather Data Collection	INF2.4.1	Upgrading fog detection on Bayway Bridge
	INF2.4.2	Additional dust warning system locations in Arizona
	INF2.4.3	Initial deployment of dust warning system in New Mexico
	INF2.4.4	Initial deployment of dust warning system in Texas
	INF2.4.5	Integrating the systems into regional information sharing
MC04 - Weather Information	INF2.2.1	Integrate weather information into corridor web site
Processing and Distribution	INF2.4.1	Upgrading fog detection on Bayway Bridge
	INF2.4.2	Additional dust warning system locations in Arizona
	INF2.4.3	Initial deployment of dust warning system in New Mexico
	INF2.4.4	Initial deployment of dust warning system in Texas
	INF2.4.5	Integrating the systems into regional information sharing
MC05 - Roadway Automated Treatment		
MC07 - Roadway Maintenance and	OP\$4.2.5	Lane Rental Demonstration in State 1
Construction	OPS4.2.6	Integrate lane rental into TMC 2
MC08 - Work Zone Management	OPS4.2.1	Pilot smart work zone in State 1
	OPS4.2.2	Pilot smart work zone in State 2
	OPS4.2.3	Integrate smart work zone into corridor web site
	OPS4.2.4	Integrate smart work zone into TMC 1
	OPS4.2.7	Full concept scope and design for uniform smart work zone
MC09 - Work Zone Safety Monitoring	OPS4.2.1	Pilot smart work zone in State 1
	OPS4.2.2	Pilot smart work zone in State 2
	OPS4.2.7	Full concept scope and design for uniform smart work zone
MC10 - Maintenance and Construction Activity Coordination	OPS4.2.8	Implementation of a standard smart work zone across the corridor

3.4.9 CVISN

Intelligent Transportation Systems/ Commercial Vehicle Operations (ITS/CVO) was addressed earlier in this document. The Commercial Vehicle Information Systems and Network (CVISN) is a related effort that is part of several different initiatives. From the ITS community, it is considered a subset of ITS/CVO. CVISN was created in the 1990s as a framework for integrating freight information at the national level. While CVISN efforts have often paralleled freight-related ITS efforts, CVISN has accomplished a number of specific goals

related to information sharing; in particular, the development of such systems as CVIEW, electronic credentialing, automated permitting, and other credential, financial, and safety systems. These achievements generally emphasize fleet vehicles and operations, and tend to result from regulation of the freight industry by federal and state governments. Because a number of forms, information systems, and institutional practices were already in place, the freight industry was able to move forward on specific initiatives that built upon those legacy efforts. The following figure from the Introductory Guide to CVISN (POR 99-7186) illustrates the current situation of CVISN and ITS architecture efforts.

All eight states have either completed or are in the process of completing the core deployment of CVISN. Additional CVISN projects that have yet to be deployed in the corridor are shown in Table 3-1.

Figure 3-1. CVISN and ITS Architecture

Table 3-1. Undeployed CVISN Projects

California No additional projects identified Arizona No additional projects identified New Mexico • ASPEN to SAFER connectivity • ASPEN to 100 percent of inspectors and at all major inspection sites • New Mexico CVIEW Texas ("new systems") • Texas CVIEW (TexVIEW) • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	State	Projects to be Deployed		
Arizona No additional projects identified New Mexico • ASPEN to SAFER connectivity • ASPEN to 100 percent of inspectors and at all major inspection sites • New Mexico CVIEW Texas ("new systems") • Texas CVIEW (TexVIEW) • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	California	No additional projects identified		
New Mexico • ASPEN to SAFER connectivity • ASPEN to 100 percent of inspectors and at all major inspection sites • New Mexico CVIEW Texas ("new systems") • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	Arizona	No additional projects identified		
• ASPEN to 100 percent of inspectors and at all major inspection sites • New Mexico CVIEW Texas ("new systems") • Texas CVIEW (TexVIEW) • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	New Mexico	ASPEN to SAFER connectivity		
• New Mexico CVIEW Texas ("new systems") • Texas CVIEW (TexVIEW) • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Automated Crash Reporting • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs		• ASPEN to 100 percent of inspectors and at all major inspection sites		
Texas • Texas CVIEW (TexVIEW) • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana • Automated Crash Reporting ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs		New Mexico CVIEW		
("new systems") • Texas Roadside Systems (fixed electronic screening stations, mobile vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Automated Crash Reporting • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	Texas	Texas CVIEW (TexVIEW)		
vehicles, and field offices all supported by DPS personnel) • Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	("new systems")	• Texas Roadside Systems (fixed electronic screening stations, mobile		
 Texas One-Stop Web Site and Credentialing Interface (CI) Louisiana Automated Crash Reporting Electronic credentialing for SSRS Automated OS/OW permitting Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi Create a CVISN compliant virtual one-stop shop Expand PrePass Program to joint port with Louisiana Complete laptop and cellular phone connectivity to enforcement systems Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs 		vehicles, and field offices all supported by DPS personnel)		
Louisiana • Automated Crash Reporting ("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs		• Texas One-Stop Web Site and Credentialing Interface (CI)		
("post Level 1") • Electronic credentialing for SSRS • Automated OS/OW permitting • Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs	Louisiana	Automated Crash Reporting		
 Automated OS/OW permitting Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Mississippi Create a CVISN compliant virtual one-stop shop Expand PrePass Program to joint port with Louisiana Complete laptop and cellular phone connectivity to enforcement systems Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs 	("post Level 1")	Electronic credentialing for SSRS		
Enhancements to the OS/OW permitting system (automation of size and weight citation issuance and citation/payment record tracking processes) Oreate a CVISN compliant virtual one-stop shop Expand PrePass Program to joint port with Louisiana Complete laptop and cellular phone connectivity to enforcement systems Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs		Automated OS/OW permitting		
weight citation issuance and citation/payment record tracking processes) Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs		• Enhancements to the OS/OW permitting system (automation of size and		
Mississippi • Create a CVISN compliant virtual one-stop shop • Expand PrePass Program to joint port with Louisiana • Complete laptop and cellular phone connectivity to enforcement systems • Expand combined ports of entry operations with surrounding states • Ramp sorting capability using WIMs		weight citation issuance and citation/payment record tracking processes)		
Expand PrePass Program to joint port with Louisiana Complete laptop and cellular phone connectivity to enforcement systems Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs	Mississippi	Create a CVISN compliant virtual one-stop shop		
Complete laptop and cellular phone connectivity to enforcement systems Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs		Expand PrePass Program to joint port with Louisiana		
Expand combined ports of entry operations with surrounding states Ramp sorting capability using WIMs		Complete laptop and cellular phone connectivity to enforcement systems		
Ramp sorting capability using WIMs		Expand combined ports of entry operations with surrounding states		
		Ramp sorting capability using WIMs		
Alabama • AL-CVIEW	Alabama	• AL-CVIEW		
• Roadside Safety - Improves screening and inspection data at the roadside		Roadside Safety – Improves screening and inspection data at the roadside		
Credential and Permit System		Credential and Permit System		
Electronic Screening		Electronic Screening		
Florida • Electronic Credentialing/HelpDesk Feasibility Study	Florida	Electronic Credentialing/HelpDesk Feasibility Study		
Automated Processing of International Fuel Tax Agreement (IFTA)		Automated Processing of International Fuel Tax Agreement (IFTA)		
Automated Processing of International Registration Plan (IRP)		Automated Processing of International Registration Plan (IRP)		
International Fuel Tax Agreement Clearinghouse		International Fuel Tax Agreement Clearinghouse		
Automated Routing and Permitting Software Design/Development		Automated Routing and Permitting Software Design/Development		
Information Systems Inventory		Information Systems Inventory		
Electronic Screening – Mainline Program 2		Electronic Screening – Mainline Program 2		
Electronic Screening at Agricultural Stations		Electronic Screening at Agricultural Stations		
• CVIEW3		• CVIEW3		
Electronic Payment Solution		Electronic Payment Solution		
Compliance HelpDesk/Service Representative		Compliance HelpDesk/Service Representative		

3.5 SWOT Analysis of Projects

Assessing and analyzing the various strengths, weaknesses, opportunities, and threats (SWOT) is a common practice in many industries to assist in the decision making process. SWOT analyses help ensure that all options are considered completely and fairly, and that decisions are made in the best interest of the organization.

For each of the projects identified in the initial program, a brief analysis is provided. Projects identified for inclusion in the SWOT analysis are either directly related to corridor operations or can provide a major benefit to the corridor. Typically, a SWOT analysis employs a 2-step process. In the first step, a number of initial screening criteria are applied to the projects to determine if they fit the goals of the program. Those projects that do not advance the goals are dropped from further consideration. In the second step, criteria are developed and applied that allow the stakeholders to rank the relative importance of each project relative to the entire program. A 1-step analysis is anticipated for this effort. The Technical Advisory Committee (TAC) and committees have already commented on projects in general, so it is expected that all will pass the initial screening.

3.5.1 Criteria

The first step is to determine the ranking criteria or needs for the projects. This is specific to the corridor application. Again, what may be a high priority for a local application does not necessarily make it a high priority for the corridor.

Funding was considered as a category, but removed by the committees. The committees generally agreed that

funding trumps all other criteria. If federal dollars are specifically earmarked to implement a project, it is much more likely that the implementing agency – whether this project is a priority or not – will implement that project. It was assumed by the reviewing committees that these projects under consideration were not fiscally constrained over a 10year program.

The state technical contacts agreed upon the following criteria:

Champion State or Agency: This criterion reflects the desires of a particular state or agency to implement a project. If an agency is willing to aggressively pursue and promote a project, its likelihood of success increases dramatically. Conversely, if it is a required effort that delays other projects, its likelihood of success diminishes. At this point in time, an individual entity does not have to be defined as a champion. Rather, the reviewers consider how likely it is that they or another agency would be interested in proposing this project.

Ease of Implementation: This criterion is generally related to complexity, although projects that cost an unusually high amount of money may be adversely affected with this criterion. Project cost is generally directly related to implementation difficulty: the more costly a project is, the more difficult it is to implement. Very complex projects also tend to be the ones in which more problems are anticipated. This is especially true of new technologies and new software. If the champion agency has extensive experience in deploying similar projects with different technologies, this will be less critical.

Operational Feasibility: This criterion is meant to reflect the current operations and structure of the public agencies throughout the corridor. There may be some projects which directly match the needs of the corridor, but there is no agency that currently has similar responsibilities. Therefore, to implement this technology, at least one agency will need to assume additional responsibilities and modify its current operations. While this is also reflected some in the previous criteria, this one addresses the ease or difficulty in operating and maintaining this technology. Additionally, many technology projects require an existing infrastructure. If infrastructure is already in place, or if previous projects created some limited deployment that could be expanded, a project would do well in this category.

Extent the Service/Technology Enables or Builds on Other Services: This criterion is an indication of how well the agencies have planned for the future. Some projects by themselves are not necessarily beneficial, but their completion is critical to the

success of related projects. Establishing databases is one example. Creating a corridorwide database is neither particularly CriterionWeightChampion state or agency20.00 %Ease of implementation17.14 %Operational feasibility17.14 %Extent to which the project enables, or builds upon, other projects21.43 %Multistate or multiregional application or benefits24.29 %Total100.00%

exciting nor visible, nor does it provide any direct impact on transportation operations. However, other related projects may require this service before they can be implemented. Additionally, some projects can only occur if related projects are already in place and operational. If an existing service is available, another agency may use information from that service to create

3.5.2 Project Summaries

Appendix G provides a complete listing of the initial program projects. The table is organized by goals and objectives, to demonstrate compliance with the work completed at the end of Chapter 2. The projects have already been matched to ITS architecture market packages above.

new projects and services. An example is device sharing between agencies.

Multistate or Multiregional Applications or

Benefits: The core purpose of the I-10 Corridor is to address those issues that are relative to the entire (or large portions of the) corridor. Even smaller regional projects should demonstrate consideration and integration with larger corridorwide efforts. Additionally, the corridor approach allows some projects with multiple champions to have a greater framework in which to demonstrate compliance and vision. This will aid in securing funding for projects which may not entirely benefit just an individual agency.

Each criterion will also have a weight associated with it. The weighting factor will be used to determine the relative importance to the corridor program. Each state provided their analysis of the criteria and recommendations for weights. The following table represents the average of the state weights:

Appendix H then addresses some detail of all of the projects. In particular, each project is briefly defined and an analysis of the SWOT is provided. By definition in SWOT, strengths and weaknesses are considered internal to the system, while opportunities and threats are external. For example, if a particular project directly and completely addresses the issues related to a particular need, it represents a strength. This would be reflected in higher scores for criteria such as "operational feasibility." On the other hand, if a technology or a service does not fit well with current operations and the implementing agency will have to modify its organization, then this is a weakness. This would be reflected in a lower score on the same criteria.

External factors could include issues such as an unproven technology. The issue is that there is no history or experience with this technology – something outside of the implementing agency's control. This would then represent a threat to the project and would be reflected in lower scores on "operational feasibility." On the other hand, if a project implements a tool that all agencies within the corridor can immediately use and benefit from, it represents an opportunity for enhanced integration. This applies when the work is to be completed outside of the agency's control, so the factor is external. This would be reflected in higher scores in criteria such as the "extent to which the service builds upon or enables other efforts."

3.5.3 Using the Criteria to Evaluate Projects

To assist the states in this effort, the consultant team provided initial analysis for all projects for each of the criteria. These initial rankings reflected the consultant's best estimate of the value the various agencies would place on each project, given the definition and the analysis in the SWOT process. When applied to the criteria, this provided an initial ranking of the projects.

The committees determined that reviewing all 108 projects was not cost effective for the states, and decided instead to use the initial ranking to classify the top 15 percent to 20 percent of the projects, which would then be ranked individually by the committee members. A natural breakpoint was chosen that isolated the top 17 projects. These projects were then distributed to the committees for review. Each committee member had the opportunity to add projects that they felt should have been included in this list from the full SWOT list. The result is an initial short-term program of 17 projects as illustrated in the following table:

Table 3-2. Short-Term Projects

Project Code	Project	Description
INF2.1.1	Create a web site with links to web sites for all states within the corridor	A simple corridor web site that just provides a single source to all available state and local traffic information sites
ADM1.1.1	I-10 Project Management Contract	This project will provide for consultant support for the overall I-10 Corridor management structure; this will include administration of committees and programs; support for task forces and management; and potentially some minor studies, designs, and implementations
INF1.3.1	Deploy fiber connections to provide state to state connectivity where appropriate	Where there are gaps in state-owned fiber or communications networks, close those gaps to allow agencies to share information directly
INF2.4.3	Create a "war map"	This will create a single web site for all agencies that has all available information along I-10
FI2.4.1	Upgrading fog detection on Bayway Bridge	This project will design and replace the existing fog detection system on the Bayway Bridge; it includes design and deployment
OPS1.3.4	THETA – Develop stage 2 capabilities (evacuation across state lines, contra flow, shelters)	This effort will build upon the initial deployment work to create additional features that are necessary for THETA to function as a regional resource for all
INF3.2.1	Provide localized and regional weather and traffic at parking facilities	Provide a local web site through Wi-Fi and kiosks that addresses regional weather and traffic information at rest stops
OPS4.2.3	Integrate smart work zone into corridor web site	A smart work zone is sometimes integrated into the local TMC, but only in terms of CCTV and possibly data; this project will take all of the outputs available from the smart work zone and make them available on the corridor web site
OPS1.4.1	TIMTOW - private sector certification for towers	Use existing proposed program to provide a means of certifying towers for work on critical links; towing companies must attend training and demonstrate they have the right equipment before getting the appropriate certification
OPS6.1.1	Establish stakeholder group with port facilities and determine where improvements are possible	Covered as part of the corridor administration contract
FI1.2.2	Integrate key asset surveillance into existing TMC	This project will deploy field equipment at the key assets, and provide integration into the nearest TMC
INF2.4.5	Integrating the systems into regional information sharing	This project will take the information available from the dust warning systems and integrate it into a regional information sharing system – either a regional TMC or an information exchange network
FI2.4.2	Additional dust warning system locations in Arizona	This will include the design and deployment of additional dust warning systems in designated locations in Arizona
FI1.1.1	New Gulfport TMC	A new TMC in the Gulfport region; includes all software, hardware, and field devices
INF2.1.2	Enhance the existing web site with an e-mail alert system	Provide e-mail alerts to motorists and carriers that sign up for it; they will receive an e-mail any time something unusual is happening on their chosen routes
OP\$3.4.1	Coordinate with federal agencies to ensure consistent operations of ports and crossings along border and through ports – admin. contract	This project is to provide the necessary administration to coordinate with a wide variety of federal agencies concerning the operations of ports and border crossings
OP\$2.2.5	Study in-state integration (FL, TX, CA, AZ) versus statewide TMC (MS)	This project is a study to examine the value of integrating TMCs within a state, versus having a single TMC to control all statewide traffic management functions

3.6 Schedule

As discussed earlier, many of the conceptual projects need to be broken into phases (e.g., demonstration, initial deployment, full deployment). For the schedule, each project was examined to determine if it needed to be divided into phases. A planning level cost is associated with each identified phase.

As mentioned previously, it is assumed at the creation of this program that there are no fiscal constraints, and that federal funding support will be available. Consequently, the program developed is very aggressive. It is safe to assume that there will be fiscal constraints on the program, and some projects will experience delays. It is expected that the corridor will review and update this program on a recurring basis to better reflect actual expectations.

The initial schedule and the relationship between projects are illustrated in Appendix I. Projects are related to their predecessors and are identified by phase. It was assumed that it would take from six to 12 months between phases to allow for typical procurement procedures.

3.6.1 Corridor Program

At a higher level, this demonstrates how the corridor will work toward interoperability. For the initial program, many of the projects will not achieve full deployment within the 10-year horizon. However, many of the projects will already be demonstrating the value of the program and improving operations early on in the program.

The projects are illustrated in Appendix F to illustrate how they relate together, and how they are working to meet the goals of the program. To help illustrate this, some visual license is used to illustrate different phases of implementation beyond the conceptual plan. For example, if a project is demonstrated in one state, deployments across the other states will be shown in the program, although they may not be defined to this level of detail in the description of projects.

The schedule reflects a first estimate of how the program could proceed. Much of the success of the program is dependent on future funding and the commitment of the states to pursue the projects listed in this program.

3.6.2 Program Costs

The detailed project phase costs are shown in Appendix J. Costs are summarized by anticipated implementation phase (pilot, initial deployment, full deployment). The assumptions used in calculating the costs are also illustrated.

For many projects, a pilot or demonstration phase is used when the technology or the application is not yet proven. Demonstrations take time, and following the systems engineering process will allow full development of the project vision. The actual demonstration can then be designed and implemented. After implementation, the project should be evaluated to determine if it meets the goals of the project. All through this process, the owning agency should be compiling a lessons learned document to share with the other states. The initial deployment should not occur until after the demonstration.

Initial deployments can happen first when a technology or application is already proven in another location within the corridor. In these cases, several

initial (initial for the agency) deployments could occur simultaneously. Much of this will depend on the complexity of the project, how much it builds upon others, and the estimated costs.

Phased or complete deployments can occur when a technology or application is already in use across portions of the corridor. In this case, the phases can occur at any time.

The initial estimate for the 10-year program is approximately \$69 million. Approximately \$48 million of this is estimated equipment costs. Approximately \$8 million of the total is allocated for pilot studies, with \$54 million for initial deployments. The minimal amount remaining in full deployments is reflective of the relatively short time frame for this program – full deployments may take another decade.

Along with the projected consultant/contractor costs for each phase, an estimate was made of the public agency time that would be dedicated to this project. For consultant management, this was typically fairly minimal. However, some projects required additional staff for a state agency. In those instances, the public sector hours were substantial. The time estimates were for the first year or life of a project. Ongoing hours were not included because it is highly dependent on when within the program the project was implemented. The cost of these hours was not included in the total program cost, but should be used by the corridor agencies to better determine the timing of projects within the program.

3.7 Corridors of the Future

As of September 2007, the I-10 Freight Corridor has been selected as one of six national Corridors of the Future. It is the expectation of the corridor that this will result in some degree of annual funding for the corridor and its member organizations.

In the initial designation, only two projects were selected. Neither project was an ITS project, and only one was part of the Corridors of the Future Program application. As of October 2007 the corridor continues to work with FHWA to better understand the long-term implications of the corridor's designation and how an agreement will be structured between the corridor and the FHWA. The study team anticipates a long-term agreement with funding contingent on the corridor following through on its commitment to deploy the projects as planned.

Chapter 4 Standards 4.1 Introduction

In the systems engineering process, all requirements and designs derive from the identified user needs. Stakeholder involvement is emphasized in the initial steps of developing an ITS architecture. Once the stakeholders have been identified, their needs are defined. ITS standards are used to define an architecture of interrelated systems that will work together to deliver the transportation services necessary to meet the needs of the stakeholders.

Standards define how ITS systems exchange information and interact to deliver services within a transportation network using a common language and protocol. ITS standards are open-interface tools that establish communication rules for how ITS devices can perform, how they can connect, and how they can exchange data to interoperate. It is important to note that ITS standards do not specify specific products or designs to use. Instead, the standards provide users the confidence that components from different manufacturers will work together and are interchangeable to the maximum degree possible.

4.2 Definition of ITS Standards

As stated above, standards help to define an architecture of interrelated systems that work together to deliver transportation services. An ITS architecture, in turn, defines how systems functionally operate, how they interconnect, and how information is exchanged between the systems to deliver services to transportation users. An architecture is functionally oriented and not technology-specific, which allows the architecture to remain effective over time. It defines what must be done, but not how it will be done.

Critical ITS standards are *voluntary*, *consensus-based*, and *open*:

- voluntary, meaning their use is not mandated by law
- consensus-based, meaning that a published standard has attained general agreement through cooperation and compromise in a process that is inclusive of most, if not all, interested parties
- open, meaning that they are not proprietary and are available for anyone to use

Regarding the voluntary nature of standards, the Federal Highway Administration (FHWA) may at some point mandate specific standards. To date, FHWA has not done so and is not actively pursuing formal action. It is likely that the ITS environment will be more mature, and systems and standards will be well-tested before they are made mandatory.

ITS standards cover different communications layers in their description of how data is communicated between the relevant transportation systems. At their most basic, these layers start with the description of how bits and bytes of data are combined and transmitted. The layers then extend to the meaning of the entire message sent over the communications path. Standards specify consistency and compatibility in the interconnects and interfaces of both hardware and software in an advanced transportation system.

4.3 Purpose of Standards

The benefits of standards within the overall framework of the national and regional ITS architectures include the following:

Development costs are minimized for ITS deployments and preserve the agency investment. Standards can reduce investments in multiple incompatible approaches and technologies. This promotes a better-known technology path, which allows for incremental system upgrades and facilitates long-term system planning.

Interchangeability of equipment is promoted. This reduces capital costs by increasing competition between equipment providers. The availability of interchangeable equipment also increases the confidence of both providers and users of ITS products that equipment can be maintained, updated, or replaced as needed.

Interoperability of hardware and software is promoted between different and diverse systems. Interoperability allows local, regional, and state ITS networks to efficiently and easily communicate operational data.

More manufacturers and producers are attracted to the ITS industry. Manufacturers are more likely to enter a market if the market is larger. This increases competition, lowers product costs, and promotes the development of new technologies and innovations.

Maintenance costs are reduced by requiring smaller spare inventories and less expensive replacement parts.

System efficiency is increased while system implementation and maintenance costs are reduced, since standard parts are more readily available. The Turbo Architecture software can be used to help develop an ITS architecture that is compatible with the National ITS Architecture, based on locally identified systems and subsystems in the regional ITS architecture. In Turbo Architecture, the output is better defined as a checklist: e.g., if component A has been identified, then standards X-Z should be used. Turbo Architecture output provides a good starting point for a region to consider; however, each agency will have to examine their particular system, its state of ITS development, and its individual needs to determine if the list is complete and accurate. Turbo Architecture has been used to develop the I-10 Freight Corridor Architecture, and will help support development of ITS standards for the I-10 Corridor.

4.4 Related Standards

Standards from other relevant industries such as information technology, telecommunications, and electronics are commonly used in ITS deployments. This allows ITS systems to benefit from the relevant experience of those industries. A list of available standards covering such areas as communication and information, computer engineering, instrumentation, measurement, and testing has been developed by the Institute of Electrical and Electronics Engineers, and can be found online at

http://www.ieee.org/web/standards/home/index.html. A summary list of relevant ITS standards can be found in Appendix K.

4.5 Current National Standards

There are currently 105 approved and developing standards for ITS development and implementation. ITS standards are developed using an established industry-standard process.

4.5.1 Standard Development Organizations (SDOs)

The process of developing standards is led by Standard Development Organizations (SDOs), which are accredited by the American National Standards Institute (ANSI). The United States Department of Transportation (USDOT) ITS Standards Program supports eight SDOs in their various roles and responsibilities in the current and future development of ITS standards, including:

- American Association of State Highway and Transportation Officials (AASHTO)
- American National Standards Institute (ANSI)
- American Public Transportation Association (APTA)
- American Society of Testing and Materials (ASTM)
- Institute of Electrical and Electronics Engineers (IEEE)
- Institute of Transportation Engineers (ITE)
- National Electrical Manufacture's Association (NEMA)
- Society of Automotive Engineers (SAE)

Each of the SDOs has its own classifications of standards documents. Of the eight organizations, AASHTO, ITE, and NEMA are the primary developers of ITS standards applicable to this study.

4.5.2 NTCIP

The National Transportation Communications for ITS Protocol (NTCIP) is a family of standards for

both the rules for communicating ("protocols") and the vocabulary ("objects") necessary to allow electronic traffic equipment from different manufacturers to operate with each other as a system. The NTCIP aims to provide a complete set of standards for the transportation industry to allow traffic systems to be built using a "mix and match" approach with equipment from different manufacturers. NTCIP standards are intended to reduce the need for reliance on specific equipment vendors and customized one-ofa-kind software. NTCIP is a joint product of AASHTO, ITE, and NEMA, and is part of a larger effort to develop a family of ITS standards that includes transit communications protocols.

To date, there are 51 NTCIP protocols that have either been jointly approved/recommended, or are in draft form. Appendix L provides summary descriptions of the NTCIP protocols. In addition, there are 12 information reports, the most basic of which is #9001, NTCIP Guide, which provides an overview of NTCIP and its overall content and processes. (Details on NTCIP can be found online at http://www.ntcip.org.)

4.5.3 CVISN

The Commercial Vehicle Information Systems and Networks (CVISN) program and associated architecture are of particular importance to the I-10 Corridor. As part of the CVISN program, the Federal Motor Carrier Safety Association has defined an initial set of core capabilities that could be deployed incrementally by a state and its motor carriers to promote ITS in truck freight operations. These core capabilities focus on electronically exchanging safety and credentialing information, electronically processing interstate registration and fuel tax

credentials, and implementing roadside electronic screening at both fixed and mobile sites.

The CVISN architecture envisions several standards to enable the desired capabilities, about 15 of which are a part of the National ITS Architecture (see http://cvisn.fmcsa.dot.gov). Examples include credentials information, safety status information, and electronic screening request. Because of the direct relevance to the I-10 activities, developments in this area need to be closely tracked and integrated into the corridor efforts.

4.6 How Standards are Applied

The National ITS Architecture provides the appropriate framework for applying standards to the I-10 National Freight Corridor ITS Architecture. The National ITS Architecture data flows are linked to "interface classes," defined by the type of system at each end of the communications path: center, field, vehicle/traveler. The data flows are further divided into "application areas." For example, an application area within the center-to-field interface class would include bidirectional communication between a center system (e.g., traffic management center) communicating with a field system (e.g., roadside equipment).

Application areas are deployment-oriented categories that focus on commonly used ITS services or systems. Application areas can be used as the starting point for identifying the relevant ITS standard. To determine which standards may be applicable, one must first identify the application area, as identified in Table 4-1.

Not all possible application areas in the National ITS Architecture are included in the table (e.g., vehicle-tovehicle). This is because application areas are only included if they are currently represented by an approved or published ITS standard. As additional ITS standards become available, more application areas will be added.

Interface Class and Application Area	Standards Application Areas
Center-to-Center – Includes interfaces between transportation management centers. Center-to-Field – Includes interfaces between a management center and its field equipment (e.g., traffic monitoring, traffic control, environmental monitoring, driver information, security monitoring, and lighting control).	 Traffic Management Traveler Information Incident Management Transit Management Transit Management Rail Coordination Data Archival Video Surveillance Dynamic Message Signs Traffic Signals Data Collection and Monitoring Vehicle Sensors Ramp Metering Environment Monitoring
Center-to-Vehicle/Traveler – Includes interfaces between a	Lighting Management Traveler Information
center and the devices used by drivers or travelers. Covers interfaces with motorists and travelers for exchange of traveler and emergency information as well as interfaces between management centers and fleet vehicles to support vehicle fleet management.	 Mayday Transit Vehicle Communication Commercial Vehicle Safety and Credentials

Table 4-1. Application Areas

interfaces with motorists and travelers for exchange of
traveler and emergency information as well as interfaces between
management centers and fleet vehicles to support vehicle fleet
management.Transit Vehicle Communication
Commercial Vehicle Safety and
CredentialsField-to-Field – Includes interfaces between field equipment,
such as between wayside equipment and signal equipment at a
highway rail intersection.Highway Rail IntersectionField-to-Vehicle – Includes wireless communication interfaces
between field equipment and vehicles on the road.Signal Priority
Toll/Fee Collection
Probe Surveillance

The application of specific standards for a project is predicated upon the regional or project ITS architecture, and the identification and selection of market packages and architectures flows/interface requirements. Once interfaces and information exchanges are determined for the region, ITS standards can be reviewed and mapped against requirements.

The I-10 Corridor spans over 2,400 miles across eight states, and passes through many geographic regions covered by a number of regional ITS architectures. Selection of standards for the corridor should be sensitive to different aspects of the various regional architectures, while also identifying common ground for eventual adoption. Figure 4-1 illustrates the relationship between architectures and standards.

Figure 4-1. ITS Architecture Relationships

Source: ITS Standards Program, U.S. Department of Transportation

Some states in the corridor have developed statewide ITS architectures. A state that has both statewide and regional architectures may identify the commercial vehicle operations (CVO) applications in the statewide ITS architecture, rather than in a regional ITS architecture, since CVO applications tend to be consistent throughout a given state.

It is not the intent of this effort to choose vendors or to enforce a particular standard along the entire corridor. Instead, by illustrating how standards are applied, the intent is to show the benefits of working toward a long-term uniform application of standards while allowing regional variations in the short to medium term.

4.7 Standards by State and Region

The various traffic management centers (TMCs) were contacted to determine various aspects of their existing communications systems, including standards that are currently in use or planned. The intent was not to fully inventory all of the standards and interface control specifications, but instead to lay the initial groundwork for a future more detailed study. A copy of the survey form can be found in Appendix M.

Areas of inquiry in the survey related to standards included the following:

- 1. Are you currently sharing video/data/voice with another TMC?
- 2. Were C2C standards designed into the process or did they evolve?

3. Have you adopted any of the current NTCIP C2C standards?

4. How are you dealing with location referencing?

5. What type of information are you sharing?

The survey response rate was about 25 percent and the results were fairly typical of TMCs elsewhere in the country. It should be noted that most of the TMCs were planned prior to the creation of many of the C2C standards, and most of the NTCIP standards have not yet been implemented in the current TMCs. There has also been very little integration of TMCs in the corridor to date. The few centers that did indicate links to other centers stated that such links typically covered voice, data, and video. These few centers said they used several location referencing systems, including latitude and longitude, state plane coordinate systems, centerline mileposts, and crossstreet references. These and other centers did identify existing or planned use of XML and XML standards for center-to-center communications. This is consistent with trends at other TMCs across the nation to move away from DATEX or CORBA interfaces toward XML.

Overall, the survey indicates that as the I-10 Corridor evolves to more integrated operation, more detailed study of these issues will be needed. The adoption of corridor standards is expected to help facilitate the interconnection of centers.

4.8 Potential I-10 Standards

The companion I-10 ITS architecture identifies market packages that apply to the I-10 Corridor. The corridor architecture additionally lists the standards typically associated with the selected market packages, as presented in Table 4-2. Additional review of the various SDOs suggests a few more standards, presented in Table 4-3.

4.9 Barriers to Implementing Standards

Barriers are defined as known or anticipated issues that must be overcome to achieve and maximize opportunities. Barriers should not be considered as fatal flaws. Barriers are generally surmountable, although there may not always be immediate practical solutions due to time, costs, and resource availability. Barriers to consider when identifying standards are described below.

4.9.1 Limited Use and Lack of Maturity

While ITS systems have been deployed across the country, deployments have generally not been uniform in all regions. Because each area has different systems deployed, with different levels of integration, not all standards have been implemented everywhere. Lack of system and standard maturity is a particular issue in newer standards such as dedicated short-range communications (DSRC).

Achieving the full benefit of standards for multiregional application depends on consistent application of standards across those regions. Collaboration and coordination among the agencies responsible for ITS implementation in the design and implementation of ITS technologies and systems will be necessary in order to maximize the potential benefits of standards in those regions.

In some technical areas, standards may not yet exist, or may still be under development and subject to change. In these cases, it is important for the agency to

carefully document the technical details of the implementation so that compliance with a future standard can be achieved at the appropriate time. In other technical areas, standards may exist but may not have been subjected to rigorous field testing. Again, full documentation of the agency's interim implementation will be needed to facilitate future compliance.

Table 4-2. Potential Standards from I-10 ITS Architecture

Name	Identifier Code
Objects Definitions	NTCIP 1201
Object Definitions for Dynamic Message Signs	NTCIP 1202
Object Definitions for Environmental Sensor Stations and Roadside Weather Information System	NTCIP 1204
Data Dictionary for Closed Circuit Television (CCTV)	NTCIP 1205
Data Collection and Monitoring Devices	NTCIP 1206
Ramp Meter Controller Objects	NTCIP 1207
Object Definitions for Video Switches	NTCIP 1208
Iransportation System Sensor Objects	NTCIP 1209
Objects for Signal Systems Master	NTCIP 1210
Commercial Vehicle Safety Reports	ANSI TS284
Commercial Vehicle Safety and Credentials Information Exchange	ANSI TS285
Commercial Vehicle Credentials	ANSI TS286
Electronic Filing of Tax Return Data	ANSI TS813
Standards Specification for Archiving ITS-Generated Traffic Monitoring Data	ASTM E2259-xx
Standard for Message Sets for Vehicle/Roadside Communications	IEEE 1455-1999
Standard for Functional Level Traffic Management Data Dictionary (TMDD) Message Sets for External TMC Communications (MS/ETMCC)	ITE TM 1.03 ITE TM 2.01
Center-to-Center and Center-to-Field Standards Groups	
Simple Transportation Management Framework (STMF)	NTCIP 1101
Base Standard: Octet Encoding Rules (OER)	NTCIP 1102
Simple Transportation Management Protocol (STMP)	NTCIP 1103
CORBA Sequeire Service	NTCIP 1104
CORBA Near-Real Time Data Service	NTCIP 1105
Point to Multinoint Protocol using RS -232 Subnetwork Profile	NTCIP 2101
Subnet Profile for PMPP over ESK Modems	NTCIP 2102
Subnet Profile for Point-to-Point Protocol using RS-232	NTCIP 2102
Subnet Profile for Ethernet	NTCIP 2104
Transportation Transport Profile	NTCIP 2201
Internet (TCP/IP and UDP/IP) Transport Profile	NTCIP 2202
Application Profile for Simple Transportation Management Framework (STMF)	NTCIP 2301
Application Profile for Trivial File Transfer Protocol	NTCIP 2302
Application Profile for File Transfer Protocol (FTP)	NTCIP 2303
Application Profile for Data Exchange ASN.1 (DATEX)	NTCIP 2304
Information Profile for DATEX	NTCIP 2505
Information Profile for CORBA	NTCIP 2502
Dedicated Short-Range Communications at 5.9 GHz Standards Group	
Resource Manager for DSRC 5.9 GHz	IEEE 1609.1
Application Services (Layers 6,7) for DSRC 5.9 GHz	IEEE 1609.2
Communications Services (Layers 4,5) for DSRC 5.9 GHz (Future Standard)	IEEE 1609.3
Medium Access Control (MAC) Extension and the MAC Extension Management Entity for DSRC 5.9 GHz	IEEE 1609.4
Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short-Range Communications	IEEE 802.11
(DSRC), Medium Access Control (MAC), and Physical Layer (PHY) Specifications	
Logical Link (Layer 2) for DSRC 5.9 GHz	IEEE 802.2
Networking Services (Layer 3) for DSRC 5.9 GHz	150 21210
Dedicated Short-Range Communications at 915 MHz Standards Group Standard Specification for Dedicated Short-Range Communications (DSRC) Physical	ASTM E2158-01
Layer using Microwave in the 902-928 MHz Band Standard Provisional Specification for Dedicated Short-Range Communications (DSRC)	ASTM PS 105-99
Data Link Layer	
Incident Management Standards Group	
Standard for Traffic Incident Management Message Sets for use by EMCs	IEEE 1512.1-2003
Standard for Hazardous Material IMMS for use by EMCs	IEEE 1512.3-2006
Standard for Common Incident Management Message Sets (IMMS) for use by EMCs Standard for Public Safety IMMS for use by EMCs	IEEE 1512-2006 IEEE P1512.2
Data Link Layer Incident Management Standards Group Standard for Traffic Incident Management Message Sets for use by EMCs Standard for Hazardous Material IMMS for use by EMCs Standard for Common Incident Management Message Sets (IMMS) for use by EMCs Standard for Public Safety IMMS for use by EMCs Advanced Traveler Information Systems (ATIS) Bandwidth Limited, General Use and On-Board Vehicle Mayday Standards Groups Location Referencing Message Specification (LRMS)	IEEE IEEE IEEE I IEEE I
Dn-Board Land Vehicle Mayday Reporting Interface	SAE J2313
Message Sets for Advanced Traveler Information System (ATIS)	SAE J2354
Standard for ATIS Message Sets Delivered Over Bandwidth Restricted Media	SAE J2369
Rules for Standardizing Street Names and Route IDs	SAE J2529
Messages for Handling Strings and Look-Up Tables in ATIS Standards	SAE J2540
RDS (Radio Data System) Phrase List	SAE J2540-1
ITIS (International Traveler Information Systems) Phrase Lists	SAE J2540-2
National Names Phrase List	SAE J2540-3
Converting ALIS Message Standards from ASN 1 to VMI	1 SAF 12630

1 able 4-3. Other Potential Standard	Table 4-3	. Other	Potential	Standard
--------------------------------------	-----------	---------	-----------	----------

Name	Identifier Code
Standard for Wireless Access in Vehicular Environments (WAVE) Resource Manager	IEEE 1909.1-2006
Standard for Common Traffic Incident Management Message Sets for use in Entities	IEEE P1512.4
External to Centers	
Traffic Management Data Dictionary and Message Sets for External TMC	ITE TMDD 2.1
Communications	
TCIP Incident Management (IM) Objects	NTCIP 1402
Class B Profile	NTCIP 2001
ISP - Vehicle Location Referencing Standard	SAE J1746
ITS Data Bus – IDB-C Physical Layer	SAE J2366/1
ITS In-Vehicle Message Priority	SAE J2395
Human Factors in Forward Collision Warning System: Operation Characteristics and	SAE J2400
User Interface Requirements	

4.9.2 Agency Unfamiliarity

Implementation of standards can be intimidating to agencies with limited in-staff resources and expertise. The challenge is to provide resources in the area of standards implementation to assist these agencies.

4.9.3 Legacy Systems

Local governments and transportation agencies often have legacy systems that may not have applied existing standards, or may not yet be fully compliant with those standards. The challenge will be to maximize their current ITS investment while at the same time upgrading the system using existing and emerging ITS standards.

4.9.4 Costs

When implementing standards, transportation agencies incur costs relating to purchase of equipment and software, in addition to the time required to educate and train staff. It may also be necessary for them to use outside expertise. In addition to direct labor costs, there are also costs to transportation users when implementation of ITS technologies is deferred while the necessary expertise in standards implementation is developed.

In some cases, a standards-based deployment may involve higher initial costs and levels of effort. However, using ITS standards should result in cost savings in the long run by providing managers with a wider range of options in service and product selections. This should translate into reduced cost and lower risk for transportation agencies when performing system maintenance, as well as when replacing, upgrading, or enhancing equipment. As standards become more widely deployed, integration with other systems in the future should be simplified.

4.9.5 TMC Integration

TMCs often serve as a focal point where multiple standards come together, resulting in fully functional, integrated operation. At TMCs, the use of standards should result in simplified operation and cost savings through connected, cooperative operation of ITS systems, subsystems, and devices. Standards deployment will help ensure efficient agency

performance, maximize agency interoperability, and facilitate the flow of traveler information to I-10 users. Examples of specific applications for standards at TMCs include device management and additions, user interfaces, video displays, communications equipment, software, and media links.

Chapter 5 Communications 5.1 Introduction

Communications is the lifeblood of intelligent transportation systems (ITS). Reliable communications technology ensures that devices work together and helps agencies manage their systems to maximize benefits. Each of the I-10 Corridor states has deployed some communications infrastructure, whether as part of specific ITS deployments, or for other purposes.

Interagency communications is a critical goal for the corridor, but this does not necessarily imply a need for a dedicated coast-to-coast fiber optic link. Instead, the various needs should be examined so that the states can work to meet these needs by addressing the identified gaps, whether physical, institutional, or systemic. This chapter provides a review of the basics of ITS communications technologies, and discusses how these technologies apply to the I-10 Corridor as the states move to plan their next implementations.

5.2 Background

From a corridor perspective, it is assumed that the ideal alternative would be a single communications network spanning the corridor and shared by all of the states. Because of the high cost and the numerous agreements that would be needed, this is not anticipated to be a likely near-term alternative. However, some of the states and regions in the corridor have already established communications networks as part of their ITS deployments, and some states have worked to create statewide networks, typically to address issues other than transportation. The intent of the corridor approach is to use existing resources and to enhance them by filling in any gaps, such as those between networks that do not extend to the state lines.

With eight states in the corridor and multiple agencies per state involved in communications technologies, it is not considered practical to invest in the design of a corridorwide communications architecture or design. However, even though the prospects of a single universal network may seem unlikely, the agencies will likely continue to work together toward the eventual implementation of this long-term goal. In the short term, some of the multistate regions will achieve communications interoperability, and certain types of information will be shared via other communications networks (e.g., the Internet, phone system, etc.).

The purpose of this chapter is to illuminate the various design and maintenance considerations associated with the development of ITS communications technologies as they pertain to the development and implementation of ITS networks in the I-10 Corridor. This information may be used by the different transportation agencies to enhance the communications component of their ITS facilities. The goal is to provide a useful resource for designing and implementing ITS communications infrastructure, with an emphasis on the physical components of the communications network. This will effectively promote coordination between the various transportation and emergency response agencies responsible for movement of interstate and intrastate freight.

The initial focus of this chapter is on the primary means of agency owned and operated landside

communications: fiber optic, wire-line, or wireless. Other options, such as leasing services (either wire-line phone lines or cellular/radio) or using the Internet, are discussed at the end of the chapter.

5.3 Communications Design Essentials

The design of a communications link is comprised of three separate components: design load considerations and parameters, operation performance, and budgetary/cost performance analysis.

5.3.1 Design Load Considerations and Parameters

An implementing agency's initial step in communications link design is the determination of the data transmission system technology to be used. This is dependent upon the user's application, the transmission speed desired, and the load requirement of the overall system to be implemented. These three elements of design are documented and presented in the physical architecture component of the state and regional architecture plans developed by each I-10 Corridor state.

Transmission requirements for the communication system are the next critical consideration. Principal transmission requirements include data rates, bandwidth, and transmission distances. Data rates for ITS networks refers to the amount of information, usually expressed in bits per second, generated by the various system components for their operation and management. Bandwidth refers to the rate at which electronic impulses (symbols) may be transmitted. The term is also used to describe channel capacity, that is, how much electronic information can be transmitted through the system. Finally, the physical distance over which the data is transmitted must be considered. Optical signals transmitted over fiber optic links will fade and degrade as transmission distance increases. Longer distances will require regeneration or amplification of the optical signal. The same is true of wireless signals relating to fade and degradation over distances.

The anticipated future data transmission needs of the ITS network are another important design consideration. This will help determine the additional bandwidth to be included in the initial installation of the fiber optic link. Growth estimates should consider not just the needs of the implementing agency, but the needs of the corridor and other agencies. When establishing multiagency coordination, even one or two fibers can provide the majority of the bandwidth required for center-to-center communications. Although a minimum of two fibers should be included for interagency coordination, in practical terms, once the agencies' future needs are accommodated, it will be necessary to analyze the number of spares required versus the number included in a standard bundle (e.g., 24, 36, 72, etc.). When rounding up to the next size bundle, there will likely be more than two spare fibers that can be dedicated to this use.

The addition of spare fibers has only a minimal impact on the cost of a fiber optic cable installation. The incremental cost of installing a 72-count fiber cable is minimal relative to the cost of a 36-count fiber cable installation. Most of the cost of installation is labor, not in the cost of the fiber cable. For wireless networks, a similar analysis should be performed, although it is often easier to upgrade wireless

equipment at a later date than it is to increase the number of fibers in the ground.

Selection of fiber optic operating wavelength for an initial ITS communications backbone is dictated by the applications that are to be used on the system. Typically for ITS systems, field device to center/hub distances are less than a mile, while backbone systems transmission distances are many miles in length. Networks that require high data rates over long distances typically use 850 nanometers (nm), 1310 nm, and 1550 nm wavelengths. For most current ITS fiber communication applications other than local distribution, single mode fiber is typically used. Fiber with low signal loss and high bandwidth will suffer less signal attenuation than higher signal loss and low bandwidth fibers. These factors will have an impact on the need for repeaters and amplifiers, as well as for transmitting and receiving equipment.

When selecting a transmission frequency for wireless communications, many factors must be considered. The desired bandwidth and transmission distance are the two most important factors in determining which frequencies can be used. For microwave, higher frequencies (such as 11 GHz, 13 GHz, and 18 GHz) are typically reserved for transmission distances of under 10 miles, as problems increase in the higher frequencies. Lower frequencies (such as 2.4 GHz, 5.8 GHz, and 6.0 GHz) are better choices for long distance transmission, although it should be noted that the 2.4 GHz and 5.8 GHz bands are unlicensed, and are therefore more vulnerable to signal interference.¹³ When using the 6.0 GHz band, the Federal Communications Commission (FCC) requires a dish antenna with a minimum diameter of six feet to minimize co-channel and adjacent channel interference.¹⁴

The reliability of the fiber optic cable or wireless link is a direct function of system design. Variation in quality of the transmitting/receiving equipment, the physical attributes of the fiber or coaxial cable, the installation environment (shielding, conduit, or aerial), and the realities of construction (i.e., cable pulling, splicing, termination, etc.) can all affect the reliability of a cable or fiber optic system. Similar considerations affect wireless communications. Lower frequency wireless, such as those of 6 GHz or below, are typically less susceptible to rain and snow, and are somewhat more flexible in their ability to operate "line-of-sight." The degree of competition for bandwidth is also a concern. A thorough review of wireless alternatives and the local communications environment must be conducted to complete a full trade-off analysis.

5.3.2 Determination of System Signal Loss for Fiber

A fiber optic backbone is critically dependent on its weakest link. The system can operate no better than its lowest performing link. This determines transmission capacity and impacts the maximum length of the system and the number of ITS devices the network can support. A system can only transmit effectively if enough power (i.e., light) remains in the transmitted signal to activate the receiver when the signal reaches the terminus of the cable.

¹³ The Federal Communication Commission (FCC) regulates the use of the electromagnetic spectrum in the United States, including the use of radio and microwave frequencies.

¹⁴ With all wireless designs, a Microwave Path and Profile analysis is recommended to ensure connectivity.

Estimating this capacity requires developing and calculating a signal link budget and bandwidth budget for the fiber optic cable system. Loss budgets are influenced by various factors including:

- number of splice points and termination points
- number of field devices and equipment access points
- usable bandwidth (wireless and fiber)
- transmission distances

The following sections describe procedures for developing loss budgets that must be considered when designing a fiber optic cable system.

5.3.2.1 Transmitter Power

To determine the output from an optic light source a small piece of fiber optic cable, typically two to three meters in length, is attached to a light source and its output is measured on the other end of the cable. This will identify any mismatches between fiber and the light source such as fiber core/light source size numerical aperture differences and other sources of power loss at the transmitter/fiber interface.

5.3.2.2 Minimum Transmit Power

Minimum transmit power that can be expected from the light source over its lifetime is typically quoted by the manufacturer. The output power of the transmitter is expressed in decibels referenced to 1.0 milliwatt (dBm) for either peak power or average power. It is important to remember to use the same power measurement (i.e., peak power or average power) in determining the loss budget or the calculation will be incorrect.

5.3.2.3 Receiver Sensitivity

When specifying a receiver, various manufacturers will quote the minimum level of signal power that is required at the receiving end of the fiber cable for the receiver to detect and decode the transmitted signal. This is known as receiver sensitivity. There are two important aspects regarding receiver sensitivity to be considered. First, as the data rates increase the receiver will require increased power to maintain the necessary bit error rate. Conversely, if the data rate remains the same while the transmitter input level drops only slightly, the bit error rate will increase significantly.

5.3.2.4 System Gain

Signal gain is a parameter that represents the increase of signal energy delivered by a particular device. System gain is the sum of the various signal gains within a system. Therefore, when working with a complete system the summation of all devices measured in dBm must be considered. Typically system gain is represented as the numerical difference between the transmitter output power and the receiver sensitivity.

5.3.2.5 System Losses

Optical signal loss (i.e., attenuation) over a fiber cable link is caused by a number of factors including splicing, coupler and connector losses, fiber attenuation, and dispersion losses due to aging and environmental conditions.

5.3.2.6 Power Margins

Because all conditions cannot be determined at the beginning of design, it is prudent for ITS communications designers to include a power margin

in their link budget calculations to account for unpredictable circumstances. The power margin defines power beyond what is theoretically needed to account for uncertainty, such as the impact of future splices due to cable cuts, or the addition of ITS field equipment. Power margins also account for the natural and gradual loss of signal power over time.

Determination of an adequate margin depends on the size and complexity of the network; in general, the larger and more complex the network, the larger the desirable margin. In addition, manufacturers sometimes include a margin referred to as the receiver power penalty. The intent is to ensure that the component is used with a power margin that allows for some compensation for bandwidth limitations, clock recovery, and dispersion problems.

5.3.2.7 Dynamic Range

A receiver has a maximum limit to the signal power it can receive before it reaches saturation and experiences signal distortion. The difference between the maximum power that can be received and the sensitivity of the receiver is called the dynamic range. It is important in system design that the dynamic range of the receiver not be exceeded.

5.3.2.8 Transmitter to Fiber Coupling

Attaching light emitting diode (LED) transmitters to fiber cable results in a large power loss because the LED has a large surface area compared to the fiber cable core. The use of laser transmitters reduces the loss because the contact surface area is much smaller; however, there is a financial trade-off because LEDs are less costly than laser transmitters. As previously mentioned, equipment manufacturers will specify the output power of transmitters which is used in determining the power (i.e., signal) loss budgets for the system.

5.3.2.9 Fiber to Receiver Coupling

Receivers do not experience significant power loss when attached to the fiber cable core. This is due to the fact that receivers have large surface areas to receive the light signal for the smaller surface area of the fiber cable core. However, although this loss may be small, its cumulative effect must still be considered in the fiber communications design to ensure a properly operating system.

5.3.2.10 Link Loss Budget

When the safety margin designed into the system is subtracted from the system gain, the remaining value is the link loss budget. This value is the maximum amount of signal loss available during the design process for cable attenuation, splicing losses, and connector loss.

5.3.2.11 Fade Margin

Knowing the length of a fiber optic cable run, a total known power loss can be calculated (allowing for connectors, splices, and cable length). This value subtracted from the link loss budget should be a positive value. This is referred to as the fade margin and represents the amount of unused signal gain for this particular application.

5.3.3 Determination of System Signal Loss for Wireless

Critical to the design of the wireless communications backbone is determining whether each wireless hop

(transceiver to transceiver) will operate at the performance level needed to support the overall length and number of external devices associated with the ITS network. The objective is to determine if enough power is left in the transmitted signal for the receiver to respond on the receiving end. This is done by developing and calculating a signal link budget and bandwidth budget for the wireless system. These loss budgets are influenced by various factors including:

- number of wireless hops
- number of field devices and equipment access points
- usable bandwidth (wireless and fiber)
- transmission distances

The following sections provide a brief description of the elements and procedures for developing loss budgets that should be considered when designing a point-to-point wireless system.

5.3.3.1 Transmitter Power

This parameter is usually specified by the manufacturer and taken into consideration at time of purchase.

5.3.3.3 Receiver Sensitivity

Along with the transmit power, the receive sensitivity metric is also given and is equally, as if not more, important than the transmitter power.

5.3.3.4 System Gain

Signal gain is a measure of the increase of signal energy delivered from a particular device. When working with a complete system the summation of all devices measured in dBm must be considered. Typically system gain is represented as the numerical difference between the transmitter output power and the receiver sensitivity. During wireless design, a theoretical model called a link budget is created. This process considers the various gains of the transmitter and receiver to determine if they are properly matched for the need.

5.3.3.5 System Losses

While signal loss (i.e., attenuation) within a wireless network can come from a variety of external sources, the physical components themselves should be designed to overcome these losses. The difference between the estimated and actual loss is directly dependant on the quality of construction and the integrity of coaxial cables, or waveguide, and their associated connectors. Immediately after construction, a benchmark measurement is usually taken as a method to compare against and measure degradation over time. Preventative maintenance measures must be put into place to combat failures due to aging and environmental conditions.

5.3.4 Determination of Design Bandwidth

Design of an ITS communications system must be such that it has sufficient bandwidth to support the data speed requirements of the system. The following information highlights different elements that should be considered when determining the bandwidth requirements for standard digital transmission.

5.3.4.1 Fiber Optics

The most useful evaluation method is to compare the time responses of the signal and the transmission. The light signal that emanates from the transmitter will be in the form of a square wave. In theory the link system (which includes the transmitter, receiver, and fiber

optic cable) response time must be faster (shorter response period) than the signal response time (signal rise time) for the signal to pass through successfully. If the transmission link system time response is too slow, then the light pulses coming out of the receiving end of the link system will have their rise times slowed down by the system response time and will be overlapping each other. The limit of the time response must be defined for the system to operate properly. The rule of thumb for this is that the light pulse coming out of the receiver is equal to or greater than 90 percent of the input light pulse amplitude in 70 percent of the input light pulse duration. Thus the allowable rise time becomes the maximum allowable link system time response.

5.3.4.2 Wireless

Design of a point-to-point wireless data backhaul solution must have sufficient bandwidth to support the volume of data and speed requirements of the system. This requires that the summed data output rate for all devices expected to transmit needs to be taken into consideration. A rule of thumb for asynchronous transmission methods (e.g., ethernet) is that the summed data output rate should exceed no more than 30 percent of the rated bandwidth of any link. A similar rule for synchronous transmission methods is that no more than 50 percent of the rated bandwidth should be used.

5.4 Communications Systems Maintenance

Maintenance of the communications system is a critical component of ITS operations that sometimes does not receive adequate attention or resources. For a newly implemented system, maintenance is typically covered as a component of the construction contract or manufacturer warranties. However, as the system ages, maintenance issues become more of an issue and left unaddressed begin to affect the quality of operational services. The focus of this writing is to present and examine individual components that comprise a communications network maintenance program.

5.4.1 Technical Expertise and Training Requirements

For those transportation agencies that have in-house ITS maintenance operations (or that are considering it) it is essential to have personnel with suitable technical expertise. ITS maintenance personnel need to know not only the ITS field devices and their requirements, but also those of the communications networks. The ideal ITS maintenance personnel would include formal training and experience with fiber optic networks, wireless (RF) transmission, basic electrical systems, and electronics.

Industries that are good sources for this type of personnel include the cable television and telephone industry. The focus of these industries is that of providing high speed communications (voice, data, and video) anchored around providing consistent and reliable network service with the least amount of service failures. Technical personnel working in these two industries are exposed to the latest in communications technological innovation and continuous company-sponsored training. The armed forces operated extensive training programs in electronic and communications technologies, and are another source for experienced personnel.

Transportation agencies that outsource their maintenance activities to private companies also have a

need for adequately trained in-house ITS technical staff. As the contracting agency, it is essential that agency personnel have the technical expertise to develop ITS maintenance requirements, evaluate maintenance proposal, and effectively oversee execution of the ITS maintenance contract.

5.4.2 Essential Testing Equipment

An essential component of maintaining a communications system is having and being able to use the necessary testing equipment. The following paragraphs identify and describe the major testing equipment that ITS maintenance personnel (in-house or contracted) will need to properly maintain fiber optic communications plant and wireless networks.

Optical Power Meter: This instrument measures the amount of optical power in a fiber. Most models handle several wavelengths and provide relative decibel (dB) as well as absolute (dB or watts) measurements. Different adapters will be required to connect with different types of optical connectors.

Optical Light Source: An optical light source injects a stable test light signal into a fiber. Models of this equipment offer both continuous wave (CW) mode and modulation mode. The typical test modulation frequencies are 270 Hz, 1 kHz, and 2 kHz.

Optical Loss Meter: This instrument combines an optical power meter and an optical light source into a single instrument. It may also be referred to as an optical loss test set (OLTS).

Fiber Identifier: This instrument traces the path of a given fiber. The fiber is identified by injecting a tracer signal into the fiber and using a tapping device on the fiber. The tapping device causes a small amount of

light to be detected as it leaks from the fiber. The light emitted is captured and evaluated to determine if it matches the tracer signal.

Optical Time Domain Reflectometer (OTDR):

This instrument is the most useful diagnostic tool for a fiber communications plant. It is used to evaluate anomalies in a length of fiber. The different aspects of fiber that can be analyzed using an OTDR include attenuation, optical loss, back reflection, and noise.

Optical Spectrum Analyzer: This instrument is used to determine the amplitude and wavelength of an optical signal. It is typically used to determine the emission spectrum of a given light source.

Fiber Optic Attenuator: This instrument is also referred to as an optical attenuator. It simulates the loss that would be caused by a long length of fiber. It is typically used to perform receiver testing. While the optical attenuator can simulate optical loss over the length of a fiber, the optical dispersion that is caused by a length of fiber is not accurately simulated.

Back Reflection Meter: This instrument quantifies the amount of light back reflection in the fiber path. Minimizing back reflection is critical because high bit rate digital fiber optic links and most laser-based analog links require very low back reflection to properly operate.

Local Injector Detector: This instrument is used to measure and assist in the tuning of fiber splices. This is done by injection and light is detected through the sides of the fiber. For rotary splice tuning, the light is detected through the splice itself rather than the fiber.

RF Power Meter: This instrument measures the amount of power (in dB or watts) before it leaves the

antenna. Different adapters can accommodate most connections.

Frequency Sweep Analyzer: This instrument is used to test the frequency response of the antenna at its tuned frequency. The end result is the check to see if the antenna is good or bad. It is also used to test the integrity of any coaxial cable or waveguide leading up to the antenna and is capable of accurately measuring the distance to any faults.

Spectrum Analyzer: This instrument gives a visual representation of a live signal and the adjacent frequency spectrum. From this representation, the user can tell the health of the signal in regard to signal strength and the RF noise floor, as well as see potential interfering frequencies.

RF Attenuator: This instrument is a tool that can be used when trouble shooting to "pad down" or attenuate the signal to avoid excessive power transmission when using with any particular measurement tool. Excessive power typically results in a higher than normal noise floor reading.

Tracking Generator: A tracking generator is used to visually see a band pass, or band notch filter, and its response. The tester can see exactly where the roll off of the filter is, and can also use this instrument to adjust or tune a filter if it is tunable.

5.4.3 Preventative Maintenance for ITS Communications

Proper ITS communications design enhances the transmission quality, capacity, and safety environment of the system. With preventative maintenance, optical fiber and wireless communication networks will function properly for years. Implementation of a preventative maintenance program is one of the most cost-effective actions that can be taken by the ITS operational agency. Factors that influence the scope and robustness of a preventative maintenance program include:

- environmental conditions
- quality of initial installation
- communications plant age
- system expansion
- construction accidents
- budget constraints

At minimum, nonintrusive tests such as an OTDR test for fiber optics and a frequency sweep analysis for wireless should be conducted annually. These tests will quickly detect any fiber micro-fractures, kinks in the coaxial cable, water migration, defective antennas, and other types of degradation in communications components. Test results should be documented so subsequent annual tests can be compared to one another and used to monitor the communications plant's functional integrity. These actions will result in the minimization of plant downtime for maintenance, increased operation effectiveness, and reduced repair costs.

5.4.4 Developing Maintenance Budgets

For operational and planning purposes each ITS operating agency along the I-10 Corridor should develop an annual maintenance budget for their ITS communications networks. The budgeting process should be predicated upon the life cycle and capital cost of components. Although the capital cost may vary in different regions it is generally accepted

Table 5-1. ITS Communications Component Costs

Items	Life Cycle (years)	Price per Unit	Units	Annual O&M		
				Low	High	
Fiber Optic Backbone Cable 96 SMFO	10	\$4.00	LF	\$0.19	\$0.47	
Fiber Optic Backbone Cable 12 SMFO	10	\$2.00	LF	\$0.19	\$0.47	
Fiber Optic Drop Cable 6 SMFO	10	\$2.00	LF	\$0.19	\$0.47	
Fiber Splice Closure		\$2,225.00	Ea	Included in O&M of fiber		
Wireless to Fiber Backbone Transition Switch	10	\$10,000.00	Ea	\$750.00	\$1,500.00	
Wireless Ethernet Bridge	10	\$8,000.00	Ea	\$2,000.00	\$2,000.00	
Terrestrial Microwave	10	\$19,200.00	Ea	\$500.00	\$1000.00	
900 MHz Spread Spec. Radio	10	\$8,200.00	Ea	\$100.00	\$400.00	

All data originated from the USDOT ITS Unit Cost Database as of September 30, 2006 (in 2005 dollars).

throughout the industry that the life cycle for fiber optic cable and wireless communication components is 10 years. The United States Department of Transportation (USDOT) has attempted to standardize the estimate of capital and maintenance cost for different ITS components throughout the country. Table 5-1 presents estimates for operation and maintenance (O&M) for communications components.

The costs identified here include only equipment costs. Often labor costs for installation and maintenance are more considerable. Whether this is contracted out, or handled by agency staff, a separate analysis must be made to determine the required number of staff and their costs.

5.4.5 Implications for the Corridor

Adequately maintaining a communications network has substantial implications for the I-10 Corridor ITS operations. Transportation agencies invest substantial amounts of money in the design, construction, and operation of their ITS facilities. Unlike traditional roadway construction and increased capacity projects, ITS networks are a complex integration of electronic technologies that constantly, and in real time, send and receive streams of electronic information. Electronic components typically either function or fail. If a key component (i.e., fiber cable) fails, then an entire network could be affected, temporarily causing Traffic Management Centers (TMCs) and their operations to be rendered ineffective.

To maximize return on investments in ITS equipment, the equipment must be kept operational. This is best achieved through an ongoing maintenance commitment on the part of the agencies that own and operate the equipment and systems. As seen by the O&M costs developed by USDOT for ITS components, financial resources dedicated to ITS communications maintenance are substantial. However, without the commitment to provide the

resources (staff expertise, maintenance equipment, spare parts, etc.) to properly maintain ITS networks, the operational benefits of ITS technologies such as safety, increased freight movement efficiencies, and reduced congestion would be lost.

5.5 Existing Communications Resources

The management of existing and future ITS highspeed communications infrastructure by transportation agencies begins with the documentation of their existing communications resources. With the establishment of this baseline, it is possible to determine how well the communications infrastructure, primarily fiber optic cable, can support current ITS operations and future expansion. Additionally this information will show where there are gaps in the communications infrastructure along the I-10 Corridor that may inhibit the management of transportation operations for the corridor.

5.5.1 Communications Survey

WSA developed and distributed a written survey instrument to all the organizational members of the I-10 Freight Management committee. The survey was designed to solicit information from the seven state transportation agencies that operated a total of 38 ITS TMCs along the I-10 Corridor. The survey was comprised of seven primary questions and 13 subcategory questions.

The purpose of the survey was to obtain detailed information regarding the center-to-center communication interconnectivity between the various TMCs operating along the national I-10 Corridor. Additionally, information was solicited regarding types of information transmitted between TMCs, the communication technologies used to interconnect the TMCs, the communication technologies to connect to various ITS field equipment, and protocol standards being used.

Of the 38 TMCs surveyed, nine surveys have been returned to date.

5.5.2 Initial Survey Results

Results of the survey show that three of the nine TMCs have center-to-center agency-owned fiber optic communications which transmit data, voice, and video. Of the remaining six TMC responses, three indicated that they have plans for center-to-center communications, while the remaining three indicated they have no plans for center-to-center communications.

For communications between TMCs and field equipment, the survey showed the following:

- Three TMCs communicate using fiber optic technology only
- Two TMCs communicate using fiber optic and wireless technologies
- One TMC communicates using fiber optic, cellular, and leased-line technologies
- One TMC communicates using fiber optic, wireless, cellular, and leased-line technologies
- One TMC communicates using fiber optic, wireless, and leased-line technologies
- One TMC communicates using fiber optic, wireless, and copper technologies

5.5.3 Corridor Implications

The good news from the survey is that many agencies already recognize that different solutions may be appropriate at different times and with different systems. Depending on funding, agency skill sets, public policies, etc., various means of establishing communications may be best.

It is not necessary to dictate a single communications medium for the corridor. Instead, the corridor states should work to establish the end-to-end connectivity that will facilitate information exchange along the corridor. This will ensure that the corridor makes maximum use of whatever communication installations are currently available.

In some locations, the method of communicating may be predetermined. Possibly an agency has a long-term agreement with a carrier to supply all communications needs at a nominal price. While the marginal cost of installing fiber optic cable along a highway reconstruction may be minimal to ensure it is designed properly and installed safely and securely, that marginal cost may be more than the project can afford. With these types of issues affecting the decisions, new options are often limited.

In many cases, the private sector can supply a quality product and service for a reasonable price. This is especially true in locations where hiring the proper staff to maintain a system is problematic, or when the distance to be covered is very large making the infrastructure costs prohibitive.

Many of the newest devices are IP (Internet Protocol) addressable. This does not necessarily mean that they are all available on the Internet, only that they use the

same protocols and could be accessed over the Internet. For the I-10 Corridor, there will likely be very little device sharing. However, the use of the Internet to exchange information is a viable alternative. This is especially useful for lower bandwidth and noncritical data. It should be noted that much of the initial centerto-center communications is via e-mail and by viewing web sites (either by a human or through web scraping), so the Internet is likely already in use. As the flow of information becomes more routine and the volume and bandwidth increase, a more dedicated solution is usually best. Public use of the Internet can result in congestion causing delays of potentially critical information, subsequently the transmission success rate is often not as good as a dedicated network. In essence, the agency must determine how critical the information is relative to the cost of the network and whether Internet communications will suffice.

5.6 Gap Analysis

State transportation agencies responsible for ITS network deployments along the I-10 Corridor would be well advised to conduct a gap analysis documenting the corridor's communication infrastructure. A gap analysis looks at where the transportation agencies are, as opposed to where they want to be, in terms of a communication network that can support the interconnectivity of the different TMCs throughout the corridor. The purpose of the gap analysis is to determine where there are deficiencies (i.e., gaps) in the ITS communications system. This information is vital to transportation agencies as they evaluate their existing and future needs for center-to-center communications throughout the corridor. A critical prerequisite for conducting a gap analysis is for agencies to determine

the type (video, voice, databases, etc.) of data they want to share between TMCs (interstate and intrastate).

As the name implies, gap analysis focuses on identifying areas of the corridor where ITS communications infrastructure may be physically nonexistent or limited in its performance capacity. Conducting a gap analysis begins with a physical inventory of the corridor's existing ITS communications infrastructure. This effort, if undertaken, would be to document the technologies (fiber optic, copper wire, wireless radio, etc.) currently deployed throughout the I-10 Corridor. Ideally this inventory would include maps showing the location of communications backbone, equipment cabinets, transmitting equipment, and conduits.

The inventory should also document the bandwidth capacity of the system available for transmitting voice, video, data, and the future expansion needs for ITS hardware and services. Areas along the corridor that are devoid of any ITS communications infrastructure altogether, should be noted and an inventory of potential leased-line services should be developed. Where TMC interconnection is needed over particularly long distances, leasing communication services from private providers may be the most practical approach.

Conducting a gap analysis for the entire I-10 Corridor would not be an overwhelming effort. Most of the information needed should be currently documented in the regional ITS architectures, construction documents, and maintenance programs of the various transportation agencies responsible for freight movement and traffic operations throughout the corridor.

Appendix A CVISN Projects Referenced in State CVISN Plans

Alabama

- 1. AL-CVIEW: Acquires the existing xCVIEW product and modifies it to exchange CVO information with state and national systems (Estimated cost: \$125,000 to \$200,000)
- 2. Roadside Safety: Improves screening and inspection data at the roadside (\$100,000 to \$200,000)
- 3. Credential and Permit System: Administers credentials and permits and allows carriers to electronically apply for, pay for, and receive credentials and permits (\$400,000 to \$700,000)
- 4. Electronic Screening: Enhances the electronic screening system to use information from AL-CVIEW (\$50,000 to \$100,000)

Florida

Electronic Credentials Administration

- 1. Electronic Credentialing/HelpDesk Feasibility Study (Estimated cost: \$150,000)
- 2. Automated Processing of International Fuel Tax Agreement (IFTA) (\$450,000)
- 3. 3. Automated Processing of International Registration Plan (IRP) (\$450,000)
- 4. International Fuel Tax Agreement Clearinghouse (\$100,000)
- 5. Automated Routing and Permitting Software Design and Development (OS/OW) (\$750,000)

Safety Information Exchange

- 1. Information Systems Inventory (Estimated cost: \$100,000)
- 2. ASPEN 2.0 Complete

Electronic Screening Systems

- 1. Electronic Screening-Mainline Program 2 (Estimated cost: \$6,200,000)
- 2. Electronic Screening at Agricultural Stations (\$1,700,000)

Programwide

1. CVIEW3 (Estimated cost: \$750,000)

- 2. Electronic Payment Solution (\$50,000)
- 3. Compliance HelpDesk/Service Representative4 (\$110,000)

Mississippi

- 1. Create a CVISN compliant virtual "one-stop" shop
- 2. Expand PrePass Program to joint port with LA
- 3. Complete laptop and cellular phone connectivity to enforcement systems
- 4. Expand combined ports of entry operations with surrounding states
- 5. Add ramp sorting capability using WIMs

Louisiana

Automated Safety Assurance Projects

- 1. ASPEN to 100% of TESS officers
- 2. ASPEN units deployed at all fixed weigh stations
- 3. Open Connection to SAFER via Cerulean Server
- 4. Louisiana Commercial Vehicle Information Exchange Window (LA CVIEW)
- 5. Automated Crash Reporting ("Post" Level 1 project)

Credentials Projects

- 1. Electronic credentialing for IRP and IFTA
- 2. Electronic quarterly filing for IFTA
- 3. IRP and IFTA Clearinghouse membership (IFTA clearinghouse functionality is already in place)
- 4. PRISM
- 5. Interfaces with Louisiana CVIEW
- 6. IRP and IFTA interfaces with SAFER
- 7. Electronic credentialing for SSRS ("Post" Level 1)

- 8. Automated OS/OW permitting ("Post" Level 1)
- 9. Enhancements to the OS/OW permitting system to include automation of size and weight citation issuance and citation/payment record tracking processes ("Post" Level 1)

Automated Screening Projects

- 1. PrePass/WIM/VMS installation at all interstate scales
- 2. Open connection from PERBA to CVIEW/scale house computer and communications upgrades
- 3. Expanded PrePass functionality

Texas

Existing Systems

- 1. TxCPA Tax Mainframe (IFTA/Interstate Registration)
- 2. TxDOT-MCD MCCS (MC Registration)
- 3. TxDOT-MCD CPS-III (OS/OW)
- 4. TxDOT-MCD SSRS
- 5. TxDOT Mainframe (IRP, Intrastate Registration, Titling)
- 6. DPS DL Mainframe (Driver's License)
- 7. DPS SAFETYNET 2000
- 8. DPS CAPRI
- 9. DPS SIDS (Inspection and Citation)

New Systems

- 1. Texas CVIEW (TexVIEW)
- 2. Texas Roadside Systems
- 3. Texas One-Stop Website and Credentialing Interface (CI)

New Mexico

- 1. ASPEN to SAFER connectivity
- 2. ASPEN to 100% of inspectors and at all major inspection sites
- 3. New Mexico Commercial Vehicle Information Exchange Window (NM CVIEW)

Arizona

An Arizona CVISN project plan document was not available at this stage of the project. The following projects were identified from the test plan and should be complete according to the timeline included.

Safety projects

- 1. ASPEN
- 2. CVIEW implementation

Credentials Projects

- 1. IPR (VISTA/RS TARGATS)
- 2. IFTA (TARGATS)
- 3. Title & Regulation (T&R)
- 4. Connect to IFTA clearinghouse
- 5. Electronic Credentials
- 6. Roadside Screening

California

California CVISN plans were not available at the close of the project.

Appendix B

User Needs Survey

Date:	meericen	er:	
Company Name:	Date:	_	
Location/Address: Contact: Title: Phone: e-mail: Purpose:	Company	Name: _	
Phone: e-mail: Purpose: e-mail: 1) Define information and service needs for trucking companies operating along the I-10 Corridor 2) Identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor 3) Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be	Location/	Address:	Titla.
 Purpose: Define information and service needs for trucking companies operating along the I-10 Corridor Identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be 	Phone:	-	
 Define information and service needs for trucking companies operating along the I-10 Corridor Identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be 	Рш	pose:	
 10 Corridor 2) Identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor 3) Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor Control (1990) Control (1990)	1)	Define ir	nformation and service needs for trucking companies operating along the I-
 2) Identify opportunities for integration of public and private data and technology applications throughout the I-10 Corridor 3) Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be 		10 Corrie	dor
3) Examine the possibilities for public/private sector involvement and financial commitment to ITS deployment in the corridor NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be	2)	Identify application	opportunities for integration of public and private data and technology ons throughout the I-10 Corridor
NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be	3)	Examine commitn	the possibilities for public/private sector involvement and financial ent to ITS deployment in the corridor
NOTICE TO SURVEY RESPONDENTS All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be			
All information provided by this survey will remain strictly confidential. No statements or other information will be linked directly to individual respondents in any publication without the express permission of the respondent (i.e. the respondent would be contacted after the survey for permission to attribute any data or quotations). Demographic, organizational, and other individual information collected from survey respondents will be			NOTICE TO SURVEY RESPONDENTS
released only to members of the project team and staff acting on their behalf in the course of project-related activities only, including for record keeping and follow up purposes. Demographic, organizational, or data related to respondents will be reported only in aggregate formats with other survey responses.		All info or other without after the organiza released of proje Demogr aggregal	rmation provided by this survey will remain strictly confidential. No statements information will be linked directly to individual respondents in any publication the express permission of the respondent (i.e. the respondent would be contacted e survey for permission to attribute any data or quotations). Demographic, tional, and other individual information collected from survey respondents will be only to members of the project team and staff acting on their behalf in the course et-related activities only, including for record keeping and follow up purposes. aphic, organizational, or data related to respondents will be reported only in te formats with other survey responses.

ORRIDOR	
CORRIDOR SURVEY/INTERVIEW GUIDE	
Note: The first objective is to identify the correct person in the organization to interview regarding fleet management and communication matters.	
Say: Hello, this isfrom Wilbur Smith Associates, we are a transportation consulting firm. I am calling regarding a study we are conducting on Interstate-10. Can you tell me the name of the person responsible for dispatching and fleet management for your company at this location?	
Name:	
Could you please connect me to this person's office, or provide me with a direct dial number for this person?	
CONTINUE OR CALL BACK WHEN THAT PERSON IS AVAILABLE.	
When person is on the line say: I'm from Wilbur Smith Associates, a transportation consulting firm conducting a study on the Interstate-10 Corridor. The reason I am calling is to learn about how fleets using I-10 communicate with their drivers and what road information is most valuable. We would like to find out how well the transportation system serves your needs and hear your opinions about what you believe could improve the region's transportation system. Are you the person responsible for managing transportation and logistics services at your facility?	
YESContinue	
NOCould you connect me with the person responsible for transportation? Contact:	
Say: Would you be willing to take a brief five-minute phone survey regarding your communication and information needs that would help you manage your fleet?	
YESContinue	
NOWould there be a better time to call back and complete the survey?	
YESWhen?	
NODiscontinue, and "Thanks for your time"	
2	
-	

NATIONAL FREIGHT CORRIDOR	- Ne
CORRIDOR SURVEY/INTERVIEW GUIDE Say: I'd like to start off by asking you a few background questions and then proceed to	
questions about your current fleet technologies and how you communicate with your drviers on the road. 1. What is your title?	
 What is the address of your terminal? What are the primary services you provide at your location? 	
a LTL b Truckload c Express Package d Drayage/cartage e Private Carriage f Specialized (Bulk, Hazmat)	
 g. other 4. How many trucks do you operate out of your facility? 	
 5. What percentage of those trucks would you estimate travel on Interstate-10? 6. What is the most common segment of I-10 that your drivers use? 	
7. What are the most common types of delays or problems your drivers encounter while traveling I-10?	
8. Does your company provide real-time information regarding congestion, incidents, accidents, and other potential delays directly to your drivers?	
If so, how is this information obtained and delivered?	
3	

) FR	RRIDOR
	9. How do your drivers attain weather related road condition information?
	10. How do your drivers attain information on the location and directions to
	trucking-related service facilities?
	11. How useful do you believe the following types of traveler information are, or would be, to your drivers/dispatchers:
	1=not useful 4=very useful
	a) Information on weather conditions 124
	b) Information on traffic conditions 124
	c) Information regarding CV parking locations 124
	<i>d)</i> Work zone information/travel route restrictions 124
	e) Current port of entry status 124
	f) Localized travel pattern information (rush hour congestion) 124
	g) Safety and security alerts 124
	h) Routing information based on driving conditions/restrictions 124
	i) Information about travel services at truck stops 124
	j) Information about public rest stops 1
	k) Information about ATMs, restaurants, and other services 12
	m) Information on provement conditions $1 - 2 - 3 - 4$
	n) Information on truck size and weight restrictions 1,2
	o) Information on hazardous materials routing 124
	12. Are there other types of traveler information that were not listed previously that you think would be useful to your drivers/dispatchers?
	If yes, please describe them:

NATIONAL FREIGHT CORRIDOR	MERGING TRAFFIC AHEAD	

a) Inform	nation on weather co	onditions	
1 Hour	A Hours	8 U 0100	16 Hours
I Hour	4 Hours	8 Hours	16 Hours
24 Hours	48 Hours	More	
b) Inforn	nation on traffic con	ditions	
1 Hour	4 Hours	8 Hours	16 Hours
24 Hours	48 Hours	More	
c) Inform	nation on truck size c	and weight restriction	ons
1 Hour	4 Hours	8 Hours	16 Hours
24 Hours	48 Hours	More	
traveler 1=not e <u>f</u> a) L	information to your o fective 4=very effect Dial in phone service Veh-based service 1	drivers/dispatchers tive (511) 123 2 3 4	4
traveler 1=not eg a) [b) V c) E d) [f) F g) E h) F	information to your of fective 4=very effect Dial in phone service Veb-based service 1 Email alerts 12 Information sent to ce Directly integrated with Fax notices 12 Electronic roadside s IAR (Highway Advis	drivers/dispatchers tive (511) 123 34 211 phones and other ith routing/dispatch 34 igns 1234 ory Radio) 12	4 r wireless devices 12 ing systems 123 .34

Appendix C

Web Survey Questions

	I-10 Mo	tor Car	rier Info	mation N	leeds Survey	7
1. Com	ıpany Name: _					
2. Wha	ıt is your title?					
3. Wha	it is the addres	ss of your	terminal?_			
4. Wha	it are the prim	ary servic	ces you prov	vide at your	location?	
a L	.TL	b	Truckload	l c.	Express P	ackage
đ D)rayage/cartage	e	Private C	arriage f.	Specialize	ed (Bulk, Hazmat)
7. Wha	tt is the most c	ommon se	egment of I-	10 that you	r drivers use? _	
What are th raveling I-1	e most commo 10?	on types oj	f delay or p	roblems you	ur drivers encoi	unter while
Δ.	General Cong	gestion	B.	Conge	estion due to in	cidents
2	Weather relat	ed events	D.	Other		
8. Doe.	s your fleet cu ments?	rrently us	se GPS trac	king systems	s to monitor tru	icks or
ship						

	IONAL GHT RIDOR
9.	Does your company provide information regarding congestion, incidents, accidents, and other potential delays directly to your drivers? If so, how is this information obtained and delivered? If not, why not?
	2. How do your drivers attain information on the location and directions to trucking-related service facilities?
	 1=not useful 4=very useful a) Information on weather conditions 1234 b) Information on traffic conditions 1234 c) Information regarding CV parking locations 1234 d) Work zone information/travel route restrictions 1234 e) Current port of entry status 1234 f) Localized travel pattern information (rush hour congestion) 1234
	 g) Safety and security alerts 1234 h) Routing information based on driving conditions/restrictions 1234 i) Information about travel services at truck stops 1234 j) Information about public rest stops 1234 k) Information about ATMs, restaurants, and other services 1234 l) Delays at port/border approaches 1234
	n) Information on truck size and weight restrictions 1234 o) Information on hazardous materials routing 1234 3

FREIGHT CORRIDO	AL DR		MERG TRAF AHE		
13. Are there you think Ij	e other types of traveler i t would be useful to your f yes, please describe the	nformation that drivers/dispatc m:	were not listed previously that hers?		
14. How far a) Inform 1 Hour 24 Hours	in advance would each t nation on weather condit 4 Hours48 Hours	raveler informa ions 8 Hours More	tion item need to be transmitted 16 Hours	1?	
b) Inform 1 Hour 24 Hours c) Inform	nation on traffic conditio4 Hours48 Hours48 Hours nation on truck size and w	ns 8 Hours More weight restrictic 8 Hours	16 Hours		
24 Hours 15. How effe traveler	48 Hours	More More llowing methods ers/dispatchers:	s are, or would be, for providing	g	
1=not ef, a) L b) W c) E d) In e) L f) F g) E h) F	Tective 4=very effective Dial in phone service (51. Veb-based service 12. C-mail alerts 123 oformation sent to cell ph Directly integrated with ra Cax notices 1234 Vectronic roadside signs IAR (Highway Advisory 1	1) 1234 4 hones and other outing/dispatch 4 1234 Radio) 12	4 wireless devices 1234 ing systems 1234 34		
				4	

NATIONAL FREIGHT CORRIDOR	
 16. How much would you estimate that a truck stuck in traffic costs your business on an hourly basis? \$Ar. 17. How many hours of delay would you estimate your I-10 fleet experiences in an average month due to congestion or weather?hours 	
"THANK YOU FOR YOUR COOPERATION"	
5	

Appendix D

Market Packages

MP ID	Market Package Name	Selected for I-10
	Archived Data Management	
AD1	ITS Data Mart	\checkmark
AD2	ITS Data Warehouse	\checkmark
AD3	ITS Virtual Data Warehouse	\checkmark
	Traffic Management	
ATMS01	Network Surveillance	\checkmark
ATMS02	Probe Surveillance	\checkmark
ATMS03	Surface Street Control	\checkmark
ATMS04	Freeway Control	\checkmark
ATMS05	HOV Lane Management	
ATMS06	Traffic Information Dissemination	\checkmark
ATMS07	Regional Traffic Control	\checkmark
ATMS08	Traffic Incident Management System	\checkmark
ATMS09	Traffic Forecast and Demand Management	
ATMS10	Electronic Toll Collection	\checkmark
ATMS11	Emissions Monitoring and Management	\checkmark
ATMS12	Virtual TMC and Smart Probe Data	\checkmark
ATMS13	Standard Railroad Grade Crossing	\checkmark
ATMS14	Advanced Railroad Grade Crossing	\checkmark
ATMS15	Railroad Operations Coordination	\checkmark
ATMS16	Parking Facility Management	
ATMS17	Regional Parking Management	
ATMS18	Reversible Lane Management	
ATMS19	Speed Monitoring	\checkmark
ATMS20	Drawbridge Management	\checkmark
ATMS21	Roadway Closure Management	\checkmark
Public Transportation		
APTS1	Transit Vehicle Tracking	
APTS2	Transit Fixed-Route Operations	
APTS3	Demand Response Transit Operations	
APTS4	Transit Passenger and Fare Management	
APTS5	Transit Security	
APTS6	Transit Maintenance	
APTS7	Multimodal Coordination	
APTS8	Transit Traveler Information	
Traveler Information		
ATIS1	Broadcast Traveler Information	\checkmark
ATIS2	Interactive Traveler Information	\checkmark

ATIS3 Autonomous Route Guidance ✓ ATIS4 Dynamic Route Guidance ✓ ATIS5 ISP-Based Route Guidance ✓ ATIS6 Integrated Transportation Management/Route Guidance ✓ ATIS7 Yellow Pages and Reservation ✓ ATIS8 Dynamic Ridesharing ✓ ATIS9 In-Vehicle Signing ✓ AVS801 Vehicle Safety Monitoring ✓ AVS802 Driver Safety Monitoring ✓ AVS803 Longitudinal Safety Warning ✓ AVS804 Lateral Safety Warning ✓ AVS805 Intersection Safety Warning ✓ AVS806 Pre-Crash Restraint Deployment ✓ AVS807 Driver Visibility Improvement ✓ AVS808 Advanced Vehicle Lateral Control ✓ AVS809 Advanced Vehicle Lateral Control ✓ AVS8010 Intersection Collision Avoidance ✓ AVS810 Intersection Collision Avoidance ✓ RVS811 Automated Highway System ✓ ✓ EM02 Emergency Routing ✓ ✓ <th>MP ID</th> <th>Market Package Name</th> <th>Selected for I-10</th>	MP ID	Market Package Name	Selected for I-10
ATIS4 Dynamic Route Guidance ✓ ATIS5 ISP-Based Roure Guidance ✓ ATIS6 Integrated Transportation Management/Route Guidance ✓ ATIS7 Yellow Pages and Reservation ✓ ATIS8 Dynamic Ridesharing ✓ ATIS9 In-Vehicle Signing ✓ AVSS01 Vehicle Safety Monitoring ✓ AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Longitudinal Control ✓ AVSS01 Intersection Collision Avoidance ✓ AVSS01 Intersection Collision Avoidance ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayaday Support ✓ <	ATIS3	Autonomous Route Guidance	\checkmark
ATIS5 ISP-Based Route Guidance ✓ ATIS6 Integrated Transportation Management/Route Guidance ✓ ATIS7 Yellow Pages and Reservation ✓ ATIS8 Dynamic Ridesharing ✓ ATIS9 In-Vehicle Signing ✓ AVS01 Vehicle Safety ✓ AVS02 Driver Safety Monitoring ✓ AVS03 Longitudinal Safety Warning ✓ AVS804 Lateral Safety Warning ✓ AVS805 Intersection Safety Warning ✓ AVS806 Pre-Crash Restraint Deployment ✓ AVS808 Advanced Vehicle Longitudinal Control ✓ AVS809 Advanced Vehicle Lateral Control ✓ AVS810 Intersection Collision Avoidance ✓ AVS811 Natomated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Partols ✓ EM05 Transportation Infrastructure Protection ✓ EM06	ATIS4	Dynamic Route Guidance	\checkmark
ATIS6 Integrated Transportation Management/Route Guidance ✓ ATIS7 Yellow Pages and Reservation ✓ ATIS8 Dynamic Ridesharing ✓ ATIS9 Dynamic Ridesharing ✓ ATIS9 In-Vehicle Safety Monitoring ✓ AVSS01 Vehicle Safety Monitoring ✓ AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM04 Roadway Service Patrols ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ <tr< td=""><td>ATIS5</td><td>ISP-Based Route Guidance</td><td>\checkmark</td></tr<>	ATIS5	ISP-Based Route Guidance	\checkmark
ATIS7 Yellow Pages and Reservation ✓ ATIS8 Dynamic Ridesharing ✓ ATIS9 In-Vehicle Signing ✓ AVS01 Vehicle Safety Monitoring ✓ AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Lateral Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Call-Taking and Dispatch ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM06 Disaster Traveler Information ✓ EM09 Evacuat	ATIS6	Integrated Transportation Management/Route Guidance	\checkmark
ATIS8 Dynamic Ridesharing ATIS9 In-Vehicle Signing Vehicle Safety Monitoring V AVSS02 Driver Safety Monitoring V AVSS03 Longitudinal Safety Warning V AVSS04 Lateral Safety Warning V AVSS05 Intersection Safety Warning V AVSS06 Pre-Crash Restraint Deployment V AVSS07 Driver Visibility Improvement V AVSS08 Advanced Vehicle Lateral Control V AVSS09 Advanced Vehicle Lateral Control V AVSS10 Intersection Collision Avoidance V AVSS11 Automated Highway System V EM01 Emergency Routing V EM02 Emergency Routing V EM03 Mayday Support V EM04 Roadway Service Patrols V EM05 Transportation Infrastructure Protection V EM06 Wide-Area Alert V EM07 Early Warning System V EM08 Disaster Response and Recovery V EM09 <t< td=""><td>ATIS7</td><td>Yellow Pages and Reservation</td><td>\checkmark</td></t<>	ATIS7	Yellow Pages and Reservation	\checkmark
ATIS9 In-Vehicle Signing ✓ Vehicle Safety AVSS01 Vehicle Safety Monitoring ✓ AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓	ATIS8	Dynamic Ridesharing	
Vehicle Safery AVSS01 Vehicle Safery Monitoring ✓ AVSS02 Driver Safery Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safery Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery	ATIS9	In-Vehicle Signing	\checkmark
AVSS01 Vehicle Safety Monitoring ✓ AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓		Vehicle Safety	
AVSS02 Driver Safety Monitoring ✓ AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Traveler Information ✓ EM09 Evacuation and Reentry Management ✓ EM09 Feet Administration ✓ CVO01 Fleet	AVSS01	Vehicle Safety Monitoring	\checkmark
AVSS03 Longitudinal Safety Warning ✓ AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Traveler Information ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓ EM09 <td>AVSS02</td> <td>Driver Safety Monitoring</td> <td>\checkmark</td>	AVSS02	Driver Safety Monitoring	\checkmark
AVSS04 Lateral Safety Warning ✓ AVSS05 Intersection Safety Warning ✓ AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓	AVSS03	Longitudinal Safety Warning	\checkmark
AVSS05 Intersection Safety Warning AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓ EM09 Electronic Clearance ✓ CVO01 Fleet Administration ✓ CVO02 Freight Admi	AVSS04	Lateral Safety Warning	\checkmark
AVSS06 Pre-Crash Restraint Deployment ✓ AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ Emergency Management EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM09 Evacuation and Reentry Management ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance	AVSS05	Intersection Safety Warning	
AVSS07 Driver Visibility Improvement ✓ AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	AVSS06	Pre-Crash Restraint Deployment	\checkmark
AVSS08 Advanced Vehicle Longitudinal Control ✓ AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance ✓ AVSS11 Automated Highway System ✓ EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	AVSS07	Driver Visibility Improvement	\checkmark
AVSS09 Advanced Vehicle Lateral Control ✓ AVSS10 Intersection Collision Avoidance AVSS11 Automated Highway System EM01 Emergency Call-Taking and Dispatch ✓ EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM10 Disaster Response and Recovery ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	AVSS08	Advanced Vehicle Longitudinal Control	\checkmark
AVSS10 Intersection Collision Avoidance AVSS11 Automated Highway System EM01 Emergency Call-Taking and Dispatch EM02 Emergency Routing EM03 Mayday Support EM04 Roadway Service Patrols EM05 Transportation Infrastructure Protection EM06 Wide-Area Alert EM07 Early Warning System EM08 Disaster Response and Recovery EM10 Disaster Traveler Information V Commercial Vehicle Operations CV001 Fleet Administration CV002 Freight Administration CV004 CV Administrative Processes V V	AVSS09	Advanced Vehicle Lateral Control	\checkmark
AVSS11 Automated Highway System EM01 Emergency Call-Taking and Dispatch EM02 Emergency Routing EM03 Mayday Support EM04 Roadway Service Patrols EM05 Transportation Infrastructure Protection EM06 Wide-Area Alert EM07 Early Warning System EM08 Disaster Response and Recovery EM09 Evacuation and Reentry Management EM10 Disaster Traveler Information CVO01 Fleet Administration CVO02 Freight Administration CVO03 Electronic Clearance CVO04 CV Administrative Processes	AVSS10	Intersection Collision Avoidance	
Emergency Management EM01 Emergency Call-Taking and Dispatch EM02 Emergency Routing EM03 Mayday Support EM04 Roadway Service Patrols EM05 Transportation Infrastructure Protection EM06 Wide-Area Alert EM07 Early Warning System EM08 Disaster Response and Recovery EM09 Evacuation and Reentry Management EM10 Disaster Traveler Information CVO01 Fleet Administration CVO02 Freight Administration CVO03 Electronic Clearance CVO04 CV Administrative Processes	AVSS11	Automated Highway System	
EM01Emergency Call-Taking and Dispatch✓EM02Emergency Routing✓EM03Mayday Support✓EM04Roadway Service Patrols✓EM05Transportation Infrastructure Protection✓EM06Wide-Area Alert✓EM07Early Warning System✓EM08Disaster Response and Recovery✓EM09Evacuation and Reentry Management✓EM10Disaster Traveler Information✓CV001Fleet Administration✓CV002Freight Administration✓CV003Electronic Clearance✓CV004CV Administrative Processes✓	Emergency Management		
EM02 Emergency Routing ✓ EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	EM01	Emergency Call-Taking and Dispatch	\checkmark
EM03 Mayday Support ✓ EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	EM02	Emergency Routing	\checkmark
EM04 Roadway Service Patrols ✓ EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM03	Mayday Support	\checkmark
EM05 Transportation Infrastructure Protection ✓ EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	EM04	Roadway Service Patrols	\checkmark
EM06 Wide-Area Alert ✓ EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ CV001 Fleet Administration ✓ CV002 Freight Administration ✓ CV003 Electronic Clearance ✓ CV004 CV Administrative Processes ✓	EM05	Transportation Infrastructure Protection	\checkmark
EM07 Early Warning System ✓ EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM06	Wide-Area Alert	\checkmark
EM08 Disaster Response and Recovery ✓ EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM07	Early Warning System	\checkmark
EM09 Evacuation and Reentry Management ✓ EM10 Disaster Traveler Information ✓ Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM08	Disaster Response and Recovery	\checkmark
EM10 Disaster Traveler Information ✓ Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM09	Evacuation and Reentry Management	\checkmark
Commercial Vehicle Operations CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	EM10	Disaster Traveler Information	\checkmark
CVO01 Fleet Administration ✓ CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓	Commercial Vehicle Operations		
CVO02 Freight Administration ✓ CVO03 Electronic Clearance ✓ CVO04 CV Administrative Processes ✓ CVO05 Luministrative Processes ✓	CVO01	Fleet Administration	\checkmark
CVO03 Electronic Clearance CVO04 CV Administrative Processes	CVO02	Freight Administration	\checkmark
CVO04 CV Administrative Processes	CVO03	Electronic Clearance	\checkmark
	CVO04	CV Administrative Processes	\checkmark
CVO05 International Border Electronic Clearance	CVO05	International Border Electronic Clearance	\checkmark
CVO06 Weigh-In-Motion ✓	CVO06	Weigh-In-Motion	\checkmark
CVO07 Roadside CVO Safety ✓	CVO07	Roadside CVO Safety	\checkmark
CVO08On-board CVO and Freight Safety & Security✓	CVO08	On-board CVO and Freight Safety & Security	\checkmark
CVO09 CVO Fleet Maintenance ✓	CVO09	CVO Fleet Maintenance	\checkmark
CVO10 HAZMAT Management ✓	CVO10	HAZMAT Management	\checkmark
CVO11 Roadside HAZMAT Security Detection and Mitigation	CVO11	Roadside HAZMAT Security Detection and Mitigation	\checkmark
CVO12 CV Driver Security Authentication	CVO12	CV Driver Security Authentication	\checkmark
CVO13 Freight Assignment Tracking ✓	CVO13	Freight Assignment Tracking	\checkmark

MP ID	Market Package Name	Selected for I-10		
	Maintenance and Construction Management			
MC01	Maintenance & Construction Vehicle/ Equipment Tracking			
MC02	Maintenance and Construction Vehicle Maintenance			
MC03	Road Weather Data Collection	\checkmark		
MC04	Weather Information Processing and Distribution	\checkmark		
MC05	Roadway Automated Treatment	\checkmark		
MC06	Winter Maintenance			
MC07	Roadway Maintenance and Construction	\checkmark		
MC08	Work Zone Management	\checkmark		
MC09	Work Zone Safety Monitoring	\checkmark		
MC10	Maintenance and Construction Activity Coordination	\checkmark		

Appendix E Goals and Objectives

Administration/Planning/Policy

C 1	
Goals	Objectives
Ensure the continued use and maintenance of the	 Identify keeper/manager of the Corridor ITS Architecture
Corridor ITS Architecture	• Develop checklist for ITS project requests by regional/state
	agencies that addresses each project's relevance and
	compliance with the architecture
	• Use checklist for ITS project requests by regional/state
	agencies
Improve coordination between regional and state	Develop common or complimentary congestion
agencies to resolve transportation issues	management strategies
	• Develop memoranda of understanding for sharing data and
	agency roles
	• Develop standards to improve commercial vehicle efficiencies
	and operations
	• Provide hurricane coordination across state boundaries
	• Develop a corridorwide data archiving system
Create a corridor to unify the I-10 states and to	Develop common ITS planning objectives to better
allow the I-10 states more flexibility and	coordinate ITS efforts along the corridor
opportunities to jointly pursue projects	• Apply for funding as a corridor/coalition to deploy additional
	projects

Field Infrastructure

Goals	Objectives
Finalize deployment of centralized traffic	Deploy TMCs in locations a-f
management systems in selected areas of the	Deploy selected key asset TMCs
corridor	Develop rural travel time detection system
Enhance/upgrade/expand coverage of sensors	Deploy CCTV video coverage of 50% of I-10, including all
along select areas of I-10 Corridor:	major structures and interchanges
	• Deploy traffic detector coverage of 50% of I-10, including all
	major structures and interchanges
	 Deploy DMS on 50% of I-10
	• Deploy environmental sensors along selected portions of I-10
	 Deploy WIM along 50% of I-10
	Develop/deploy overweight vehicle detection systems along
	selected portions of I-10

Operations

Goals	Objectives
Improve communication and	• Interconnect and coordinate signal systems to improve traffic
coordination between traffic management	control between intermodal facilities and I-10
agencies and emergency response agencies	• Develop and deploy an automated incident detection and
for evacuation, traffic data exchange,	management system for I-10 and primary routes
emergency response coordination, and	Provide increased coordination during disasters
traveler information purposes	• Develop new agreements and strategies for incident response
	coordination
	• Provide training and education to improve interagency coordination
Improve communication and	Provide ability to manage special events of a large size throughout
coordination between traffic management	the corridor
agencies, local government, and law	Create connectivity between traffic-related management centers
enforcement	throughout the entire corridor
Enhance/streamline credentials	Reduce cargo processing time at ports of entry
administration and verification, including	Develop and deploy electronic manifests
at ports of entry	Develop and deploy real-time vehicle tracking and conditions
	reporting systems for specialty cargo
	Complete deployment of FAST and other border programs
Enhance safety	Improve CVO size/weight enforcement
	Develop and deploy smart ITS work zones for long-term
	construction projects
	Develop and deploy real time vehicle tracking and conditions
	reporting systems for specialty cargo
	Develop and deploy projects to better respond to HAZMAT
	situations
	• Develop and deploy travel time systems for rural areas to improve
	incident information sharing
Enhance security	Coordinate with regional and national businesses to improve
	security within the larger federal programs.
	Coordinate with regional and national law enforcement to target
	areas of concern
Reduce congestion	Implement projects to reduce congestion in and around ports and
	multimodal facilities
	• Expand the use and capabilities of service patrols

Appendix F Projects Mapped to Goals

Administration/Planning/Policy

	Goals		Objectives		Project
			Identify keeper/		
	Ensure the continued use		manager of the		I-10 Project
	and maintenance of the		Corridor ITS		Management
ADM.G1	Corridor ITS Architecture	ADM.G1.O1	Architecture	ADM.1.1.1	Contract
			Develop a checklist		
			for ITS project		
			requests by		
			regional/state agencies		
			that addresses each		
			project's relevance and		
			compliance with the		
		ADM.G1.O2	architecture		See ADM1.1.1
			Use checklist for ITS		
			project requests by		
		ADM.G1.O3	regional/state agencies		
	Improve coordination		Develop common or		Implement Quick
	between regional and state		complimentary		Clearance policies
	agencies to resolve		congestion		(shoulder or in-
ADM.G2	transportation issues	ADM.G2.O1	management strategies	ADM2.1.1	lane?)
					Enact legislation
					to limit liability
					for moving
				ADM2.1.2	vehicles
				ADM2.1.3	Move-it laws
					Move over laws
					for emergency
				ADM2.1.4	responders
					Create standard
					polices and
					procedures for
					planned special
				ADM2.1.5	events
			Develop memoranda		
			of understanding for		
			sharing data and		Task under
		ADM.G2.02	agency roles		ADM1.1.1

	Goals	-	Objectives		Project
			Develop standards to		Multi-state
			improve commercial		OW/OS vehicle
			vehicle efficiencies and		permit (standard
		ADM.G2.O3	operations	ADM2.3.1	envelop)
			*		Pilot test for one-
					stop credentialing
					along the Gulf
				ADM2.3.2	Coast
					Create a corridor-
					wide
					credentialing
				ADM2.3.3	center
					Pilot test
					OS/OW
					automated
					permitting across
				ADM2.3.4	multiple states
					Add automated
					permitting to a
					corridor wide
					credentialing
				ADM2.3.5	center
					Share response
					plans and
			Provide hurricane		determine areas
			coordination across		for increased
		ADM.G2.04	state boundaries	ADM2.4.1	coordination.
					Plan/design a
			Develop a corridor		corridor wide
			wide data archiving		data archiving
		ADM.G2.O5	system	ADM2.5.1	system
					Build the initial
					corridor archiving
				ADM2.5.2	system
					Evolution 1 of
				ADM2.5.3	archiving system
	Create a corridor to unify		Develop common ITS		
	the I-10 states and to allow		planning objectives to		
	the I-10 states more		better coordinate ITS		
	flexibility and opportunities		efforts along the		Task under
ADM.G3	to jointly pursue projects	ADM.G3.O1	corridor		ADM1.1.1
			Apply for funding as a		
			corridor/coalition to		
			deploy additional		Task under
		ADM.G3.O2	projects		ADM1.1.1

Í.

Field Infrastructure

	Goals		Objectives		Project
	Finalize deployment of		Deploy TMCs in all		
	management systems in		metropolitan areas		New Gulfport
FLG1	selected areas of the corridor	FLG1 01	greater than 75 000	FI1 1 1	TMC
11.01	selected areas of the confider	11.01.01	greater than 7 9,000	111.1.1	11010
				FI1.1.2	Deploy TMC 2
				FI1.1.3	Deploy TMC 3
			Deploy selected key		Identify key assets along corridor that are not covered as part of
		FI.G1.O2	asset TMCs	FI1.2.1	an urban TMC
					Integrate key asset
					surveillance into
				FI1.2.2	existing TMC
			Develop rural travel		
		FI.G1.O3	time detection system	0	See OPS.G4.O5
			Deploy CCTV video		
	Enhance/upgrade/expand		coverage of 50% of I-		
	coverage of sensors along		10 including all major		
	select areas of the I-10		structures and		
FI.G2	Corridor	FI.G2.O1	interchanges	FI2.1.1	
			Deploy traffic detector coverage of 50% of I- 10 including all major structures and		
		FI.G2.O2	interchanges	FI2.2.1	
		FLG2 Q3	Deploy DMS on 50%	FI2 3 1	
		11.02.03	Deploy environmental	1 12.3.1	Upgrading fog
			sensors along selected		detection on
		FI.G2.O4	portions of I-10	FI2.4.1	Bayway Bridge
					Additional dust
					warning system
					locations in
				FI2.4.2	Arizona

Goals		Objectives		Project
				Initial
				deployment of
				dust warning
				system in New
			FI2.4.3	Mexico
				Initial
				deployment of
				dust warning
			FI2.4.4	system in Texas
				Integrating the
				systems into
				regional
				information
			FI2.4.5	sharing
		Deploy WIM along		Pilot test WIM in
	FI.G2.O5	50% of I-10	FI2.5.1	Mississippi
				Additional WIM
				deployments in
			FI2.5.2	Florida
				Pilot test WIM in
			FI2.5.3	state 2
				Integrate WIM
			FI2.5.4	with TMC1
			1121)11	
			EI2 5 5	Integrate wilvi
			112.).)	
				Integrate with
			FI2.5.6	PrePass
		Develop/deploy		
		oversize vehicle		
		detection systems		
		along selected portions		
	FI.G2.O6	of I-10	FI2.6.1	

Operations

	Goals		Objectives		Project
	Improve communications				
	and coordination between				
	traffic management agencies		Interconnected		
	and emergency response		coordinated signal		
	agencies for evacuation,		systems and inter-		
	traffic data exchange,		agency signal system		
	emergency response		for traffic control		Pilot test
	coordination, and traveler		between intermodal		integrated signals
OPS.G1	information purposes	OPS.G1.O1	facilities and I-10	OPS1.1.1	in state 1
			Develop and deploy		
			an automated incident		
			detection and		Pilot test
			management system		automated
			for I-10 and primary		incident detection
		OPS.G1.O2	routes	OPS1.2.1	in state 1
					THETA -
			Provide increased		Implement basic
			coordination during		capabilities with
		OPS.G1.03	disasters	OPS1.3.1	state of Florida
					THETA -
					Implement basic
					capabilities with
					state of
					Mississippi;
					implement
					"almost real time"
					map updates with
					traffic and
				OPS1.3.2	weather
					THETA -
					Collaborate with
					all sponsoring
					states to achieve
					capabilities,
					economies of
					scale, and system
				OPS1.3.3	architectures

	Goals		Objectives		Project
					THETA -
					Develop stage 2
					capabilities
					(evacuation across
					state lines, contra
					flow, evacuation
				OPS1.3.4	shelters)
					THETA -
					Implement stage
					2 with Alabama,
				OPS1.3.5	Louisiana
					THETA -
					Implement stage
				OPS1.3.6	2 with Texas
			Develop new		TIMTOW -
			agreements and		private sector
			strategies for incident		certification for
		OPS G1 04	response coordination	OPS1 4 1	towers
		010.01.01		0101.1.1	Create a Gulf
					region incident
					management
				OPS1 / 2	system
				0131.4.2	Sharo
					communications
					in fraget muset une
					with amorgan av
				OPS1 / 3	providers
			D	0131.4.5	Drassida EM
			education to improve		training for DOI
			interagency	ODC1 5 1	staff throughout
	T	OP3.G1.05		OP\$1.5.1	the corridor
	improve communications		Provide ability to		
	and coordination between		manage special events		Add major special
	traffic management agencies,		of a large size		event information
	local government, and/or		throughout the	ODC2 1 1	to the corridor
OP5.G2	law enforcement	OPS.G2.01	corridor	OP\$2.1.1	web site
					Develop a smart
					planned special
					event system for
ļ				OP\$2.1.2	the corridor
					Pilot test a smart
					planned special
					event system in
				OPS2.1.3	state 1

	Goals		Objectives		Project
					Pilot test a smart
					planned special
					event system in
				OPS2.1.4	state 2
			Create connectivity		Integrate
			between traffic related		REGIONAL
			management centers		TMC with two
			throughout the entire		major regional
		OPS.G2.O2	corridor	OPS2.2.1	agencies
					Integrate
					REGIONAL
					TMC with two
					major regional
				OPS2.2.2	agencies
					Integrate
					REGIONAL
					TMC with minor
				OP\$2.2.3	local agencies
					Integrate
					REGIONAL
					I MC with minor
				OP52.2.4	local agencies
					Examine the ways
					currently
					deploying TMCs
					for suggested
				OPS2 2 5	improvements
				0102.2.)	
				ODS2.2	Biloxi/Mobile
				0P32.2.6	I MC integration
					Mobile/Pensacola
				OPS2.2.7	TMC integration
					Pilot test a rural
					alternate route
				OP\$2.2.8	plan for 1-10
					Pilot test an
					urban alternate
				ODE2 2 0	route plan for I-
	E.1. 1.			0152.2.9	10
	Ennance/streamline		Doduce the time or		Haningan andiast
	and verification including at		spends processing		with port of
OPS C2	and vermeation including at	OPS C3 O1	through ports of optime	OP\$3.1.1	Jacksonville
Or3.G3	ports of entry	Or5.G5.O1	unough ports of entry	Or55.1.1	Jacksonville

	Goals		Objectives		Project
			Deploy WIMs at ports		
			of entry to provide		Deploy WIMs at
			checks on loads before		all Florida Gulf
		OPS.G3.O2	they leave the port	OPS3.2.1	coast ports
			Develop/deploy real-		Pilot test
			time vehicle tracking		HAZMAT
			and conditions		routing database
			reporting systems for		across multiple
		OPS.G3.O3	specialty cargo	OP\$3.3.1	states
					Create initial
					corridor
					management
					center HAZMAT
				OP\$3.3.2	database
					Coordinate with
					federal agencies to
					ensure consistent
					operations of
					ports and
			Finish deploying		crossings along
			FAST and other		border and
			border programs along		through ports –
		OPS.G3.04	the entire corridor	OP\$3.4.1	admin. contract
					Deploy FAST at
				OD62 (2	locations A, B, C,
				0P\$3.4.2	and D
					Deploy next
					generation federal
					security project at
				ODC2 4 2	locations A, B, C,
				Or35.4.5	
					Expand
					of optry program
					across all Culf
				OP\$3 / /	actors all Gull
				0100.4.4	Work with
					federal agencies to
					create a secure
					commercial
			Use credentialing		vehicle
			information in		credentialing
		OPS.G3.O5	multiple applications	OPS3.5.1	database

Ń.

	Goals		Objectives		Project
					Pilot test of
					roadside safety
					inspection in state
				OP\$3.5.2	1
					Apply roadside
					safety application
					across multiple
				OP\$3.5.3	states
			Enhance more		
			effective CVO		
ODS C4	Ealer a second	ODS C 4 01	size/weight	ODS 4 1 1	See INE C2 O5
0r3.G4		Or5.G4.01	Develop/deploy.emort	0134.1.1	See IINF.G2.O3
			ITS work zones for		
			long-term		Pilot smart work
		OPS G4 02	construction projects	OPS4 2 1	zone in state 1
				01011211	
				OPS(22)	Pilot smart work
				0134.2.2	Integrate smart
					work zone into
				OP\$4.2.3	corridor web site
					Integrate smart
					work zone into
				OPS4.2.4	TMC 1
					Lane Rental
					Demonstration in
				OPS4.2.5	state 1
					Integrate lane
					rental into TMC
				OPS4.2.6	2
					Full concept
					scope and design
				ODS 4 2.7	for uniform smart
				0154.2./	work zone
					Implementation
					smart work zone
					across the
				OPS4.2.8	corridor

	Goals		Objectives		Project
					Increased training
					for emergency
					responders along
					I-10 (nuclear in
					the SW/
			Deploy projects to		petrochemicals in
			better respond to		the Gulf Coast
		OPS.G4.O3	HAZMAT situations	OPS4.3.1	region)
					Pilot test
					automated crash
			Develop and deploy		reporting with a
			projects to enhance		private service
		OPS.G4.O4	vehicle safety	OPS4.4.1	provider
					Combine
					automated crash
					reporting with
					material load
				OPS4.4.2	information
					Use cell phones
					for probes in rural
					New Mexico to
			Develop and deploy		generate travel
			travel time systems for		times for use in
			rural areas to improve		incident
			incident information	ODC (5.1	information
		OPS.G4.05	sharing	OP\$4.5.1	sharing
					Use cell phones
					for probes in rural
					l exas to generate
					travel times for
					use in incident
				OPS/52	sharing
				0134.).2	Increased use of
					license plate
				OPS4 5 3	readers in Florida
			Coordinate with	0101.9.9	readers in Florida
			regional and national		Set up committee
			businesses to improve		to coordinate
			security within the		with businesses to
			larger federal		look for joint
OPS.G5	Enhance security	OPS.G5.O1	programs	OPS5.1.1	opportunities

	Goals		Objectives		Project
					Increase use of
					credentialing and
					checking around
					petroleum
					facilities along I-
				OPS5.1.2	10
			Coordinate with		
			regional and national		
			law enforcement to		
		OPS.G5.O2	target areas of concern	OPS5.2.1	See OPS.G1
					Establish
					stakeholder group
					with port facilities
			Implement projects to		and determine
			reduce congestion in		where
			and around ports and		improvements are
OPS.G6	Reduce congestion	OPS.G6.O1	multimodal facilities	OPS6.1.1	possible
					Deploy project to
					reduce congestion
					in and around a
				OPS6.1.2	port facility
					Deploy project to
					reduce congestion
					in and around a
					multimodal
				OPS6.1.3	facility
					Increase
					capability, range,
			Create a corridorwide		and size of
			information exchange		existing service
		OPS.G6.O2	network	OPS6.2.1	patrols
					Expand use of
					rapid incident
					scene clearance
				OPS6.2.2	(RISC) in Florida
					New service
					patrols in location
				OPS6.2.3	А
					Pilot test video
					from service
					patrol to TMC in
				OPS6.2.4	state A

Information

	Goals		Objectives		Project
			Expand use of CMS		
			signs for traveler		
			information on I-10,		
	Improved use and		primary routes, and		
	coordination of existing field		other strategic		
INF.G1	infrastructure	INF.G1.O1	locations	INF1.1.1	See INF.G2.O3
					Deploy a project
					that provides
					ability to get 511
			Coordinated 511		information
			allowing seamless		across multiple
			transition across state		states from one
		INF.G1.O2	boundaries	INF1.2.1	state
					Deploy 511
					corridor
					information in all
				INF1.2.2	corridor states
			Complete fiber or		
			other communications		
			installations to		Deploy fiber
			provide		connections to
			communications with		provide state to
			all relevant agencies		state connectivity
		INF.G1.O3	along the corridor	INF1.3.1	where appropriate
			Develop/deploy a		
			corridorwide		
			information exchange		
			clearinghouse which		
			includes		
			transportation data		
			management		
			information for		Create a web site
			effective		with links to web
	Promote the exchange of all		communication		sties for all states
	relevant information along		between all the		within the
INF.G2	the entire corridor	INF.G2.O1	corridor agencies	INF2.1.1	corridor
					Enhance the
					existing web site
					with an email
				INF2.1.2	alert system

	Goals		Objectives		Project
					Provide upgrades
					and
					enhancements to
					the corridor web
				INF2.1.3	site
			Develop/deploy real		Integrate weather
			time, en-route weather		information into
		INF.G2.O2	information provision	INF2.2.1	corridor web site
					Deploy test Wi-Fi
			Develop/deploy Wi-Fi		for emergency
			spots along I-10 for		response along
			emergency response		selected sections
		INF.G2.O3	data transfer	INF2.3.1	of corridor
					Establish a means
					of sharing
			Create a corridorwide		information
			information exchange		between TMCs
		INF.G2.O4	network	INF2.4.1	along the corridor
					Create an instant
					messaging
				INF2.4.2	network
					Create a
				INF2.4.3	"Warmap"
					Deployment of
			Provide 511 coverage		511 in states
		INF.G2.O5	for all of I-10	INF2.5.1	without 511
					Multi-state
					coordination and
					seamless
				INF2.5.2	integration
<u> </u>					Enhance
			Develop/deploy media		coordination with
			coverage of road		media through
		INF.G2.O6	closure plans	INF2.6.1	web site
			Provide positive		
	Provide services to aid		guidance to		Smart Park
	commercial vehicle traffic		appropriate parking		demonstration in
INF.G3	throughout the corridor	INF.G3.O1	facilities	INF3.1.1	state 1
	~				Smart Park
					demonstration in
				INF3.1.2	state 2

Goals		Objectives		Project
				Provide localized
		Provide information		and regional
		of value to truck		weather and
		drivers at facilities		traffic at parking
	INF.G3.O2	they use	INF3.2.1	facilities

Appendix G Detailed Project Descriptions

Project		
code	Project	Description
ADM.1.1.1	I-10 project management contract	This project will provide for consultant support for the overall I-10 corridor management structure. This will include administration of committees and programs support for task forces and management, and some potential minor studies, designs, and implementations; although the majority of the projects will be let and procured through a public agency's normal process.
ADM2.1.1	Implement quick clearance policies (shoulder or in- lane?)	Implement policies in all eight states to both allow DOTs to require vehicles to be removed from shoulders within a short time frame (e.g., 4 hours).
ADM2.1.2	Enact legislation to limit liability for moving vehicles	Implement legislation in all eight states to limit the liability of the state DOTs or other responding agencies in damages to vehicles that are moved to prevent congestion or hazards for secondary accidents.
ADM2.1.3	Move-it laws	Implement legislation in all eight states that requires people involved in minor accidents to move their vehicles from the roadway before exchanging information. Typically, insurance companies tell their customers to stay in place until the police arrive – even if it is in traffic. This law will require people to relocate to a safe area to exchange information or wait for police or repairs.
ADM2.1.4	Move over laws for emergency responders	Implement legislation that requires traffic to move one lane over or slow down for emergency vehicles that are operating on the roadside. This is specifically for stopped vehicles, not the current laws that require traffic to stop to allow an emergency vehicle to pass them.
ADM2.1.5	Create standard polices and procedures for planned special events	Planned special events include everything from road construction and maintenance to golf outings and marathons. This project would create standard procedures for use by public agencies from initial event identification through event cleanup. This guide will cover issues such as media contacts, agency coordination, and standard signing for the event.
ADM2.3.1	Multistate OW/OS vehicle permit (standard envelope)	Create a standard envelope (height, width, length, weight) for commercial vehicles that applies along all of I-10. Any vehicle that is within the envelope will be able to more quickly and easily get permits throughout the corridor.
ADM2.3.2	Pilot test for one-stop credentialing along the Gulf Coast	Create a center that will allow commercial vehicles to obtain all permits and credentials for trips across state boundaries within the gulf coast region
ADM2.3.3	Create a corridorwide credentialing center	Create a center that will allow commercial vehicles to obtain all permits and credentials for trips across state boundaries within all eight states.

Project	Project	Description
ADM2 3 4	Pilot test OS/OW	This project is to allow one stop shopping for OS/OW permits
1101012.9.1	automated permitting across	They do not have to fit the standard envelop, and this does not
	multiple states	involve other credentialing – just the OS/OW permits
ADM2 3 5	Add automated permitting	DROP = if the center in ADM2.3.3 is created first, then project
1101012.5.5	to a corridor wide	ADM2.3.4 will be piloted in the center. If the pilot is completed
	credentialing center	first, this project should be included as a task in ADM2.3.3.
ADM2.4.1	Share response plans and	The DOTs need to meet and share response plans for anticipated
1	determine areas for	emergencies (e.g., hurricanes, nuclear accidents, etc.). This project
	increased coordination	could be administered under the overall corridor contract
		management contract or could be a separated working group.
ADM2.5.1	Plan/design a corridorwide	Many third party vendors and commercial fleets depend on historical
1	data archiving system	data to help better plan their routes and services. The sharing of real
		time information rarely provides a useable archive of historic data.
		This project will assemble the traffic related data (real time traffic,
		incidents, road construction, etc.) and put them in a format that
		interested parties can easily use. This project is for the initial design
		of the system.
ADM2.5.2	Build the initial corridor	Building from ADM2.5.1, this project will create the initial
	archiving system	deployment of an archiving system.
ADM2.5.3	Evolution 1 of archiving	This will build from ADM2.5.2 and provide additional features and
	system	enhancements
FI1.1.1	New Gulfport TMC	A new TMC in the Gulfport region. Includes all software, hardware,
		and field devices.
FI1.1.2	Deploy TMC 2	This is a place holder for another TMC that may be created in the
		region.
FI1.1.3	Deploy TMC 3	This is a place holder for another TMC that may be created in the
		region.
FI1.2.1	Identify key assets along	This report will work with the eight states along the corridor to
	corridor that are not covered	identify key assets that may not be already managed by a TMC. This
	as part of an urban TMC	would include remote bridges, tunnels, or key interchanges. The
		intent is to identify which locations require some form of traffic
		management or surveillance
FI1.2.2	Integrate key asset	This project will deploy field equipment at the key assets, and
	surveillance into existing	provide integration into the nearest TMC
	ТМС	
FI2.4.1	Upgrading fog detection on	This project will design and replace the existing fog detection system
	Bayway Bridge	on the Bayway Bridge. It includes design and deployment.
FI2.4.2	Additional dust warning	This will include the design and deployment of additional dust
	system locations in Arizona	warning systems in designated locations in Arizona
FI2.4.3	Initial deployment of dust	This project will include full design and deployment of dust warning
	warning system in New	systems similar to those used in Arizona for New Mexico
	Mexico	

ÍI.

Project	Project	Description
FI2 4 4	Initial deployment of dust	This project will include full design and deployment of dust warning
1 12. 1. 1	warning system in Texas	systems similar to those used in Arizona for Texas
FI2 4 5	Integrating the systems into	This project will take the information available from the dust
112.1.9	regional information sharing	warning systems and integrate them into a regional information
		sharing system – either a regional TMC or an information exchange
		network.
FI2.5.1	Pilot Test WIM in	This project involves the design and deployment of an initial virtual
	Mississippi	weigh station along I-10 in Mississippi.
FI2.5.2	Additional WIM	This project will deploy additional virtual weigh stations similar to
1 121912	deployments in Florida	those already deployed.
FI2.5.3	Pilot Test WIM in State 2	This project involves the design and deployment of an initial virtual
112.9.0		weigh station along I-10 in Mississippi.
FI2.5.4	Integrate WIM with TMC1	The virtual weigh station in one location will be integrated so that all
		information is transmitted in real time to the local TMC.
		Enforcement is still expected to occur in the field, but the TMC will
		monitor the system and provide a tool for determining targeted
		enforcement
F12.5.5	Integrate WIM with TMC2	The virtual weigh station in one location will be integrated so that all
		information is transmitted in real time to the local TMC.
		Enforcement is still expected to occur in the field but the TMC will
		monitor the system and provide a tool for determining targeted
		enforcement
F12.5.6	Integrate with PrePass	I his project would integrate information from the virtual weigh
		stations with PrePass. This could include verifying the PrePass trucks
		are near in weight what they currently say they are at. This would
		help PrePass check its customers and give the states more confidence
ODC1 1 1	D:1	in PrePass.
0151.1.1	Pilot test integrated signals	I his project would pilot test integrating signals with freeway
	in State I	operations. The intent is to help move cargo in and out or
ODS1 2 1	Dilat test sutemated	This project will design and deploy and AID system in any TMC
0131.2.1	incident detection in State 1	with a focus on L 10
OPS1 3 1	THETA Implement basic	Create and deploy a system to provide real time information to
0131.3.1	capabilities with state of	specific locations to aid in evacuation activities and real time
	Florida	planning
OPS1 3 2	THETA Implement hasia	Create and deploy a system to provide real time information to
0131.3.2	capabilities with state of	specific locations to aid in evacuation activities and real time
	Mississippi: implement	specific locations to and in evacuation activities and real time
	"almost real time" man	planning in ivitsoisoippi.
	undates with traffic and	
	weather	
	weather	

Ì.

Project code	Project	Description
OPS1.3.3	THETA - Collaborate with all sponsoring states to achieve capabilities, economies of scale, and system architectures	This effort will take the work completed in Florida and Mississippi and will expand its use throughout the entire Gulf region. The system will provide an initial system for the region
OPS1.3.4	THETA - Develop Stage 2 capabilities (evacuation across state lines, contra flow, evacuation shelters)	This effort will build upon the initial deployment work to create additional features that are necessary for THETA to function as a regional resource for all.
OPS1.3.5	THETA - Implement stage 2 with Alabama, Louisiana	This effort will build upon the initial deployment work to create additional features that are necessary for THETA to function as a regional resource for all.
OPS1.3.6	THETA - Implement stage 2 with Texas	This effort will build upon the initial deployment work to create additional features that are necessary for THETA to function as a regional resource for all.
OPS1.4.1	TIMTOW - Private sector certification for towers	Uses existing proposed program to provide a means of certifying towers for work on critical links. Towing companies must attend training and demonstrate they have the right equipment before getting the appropriate certification. For incidents on I-10, only approved towers will be contacted.
OPS1.4.2	Create a Gulf region incident management system	A new system in the Gulf region to coordinate incident management across state lines. This could be a separate system or operation, or it could be included as part of an existing system.
OPS1.4.3	Share communications infrastructure with emergency providers	This project would identify specific locations where emergency responders would benefit by having access to transportation communications infrastructure. The project would first find several locations where this is needed and then deploy a single test within one of those regions.
OPS1.5.1	Provide EM training for DOT staff throughout the corridor	While DOT staff members are always looking for EM stakeholders to join the DOT committees, it is important that the DOT staff know what the EM staff responsibilities are. This training will illustrate the needs of the EM staff so the DOT staff. It will create awareness and understanding. This will allow the DOT staff to interact well with the new staff.
OPS2.1.1	Add major special event information to the corridor web site	In addition to construction information, add information on planned special events. These would be any events that impact I-10.
OPS2.1.2	Develop a smart planned special event system for the corridor	This would be a module or server within a more complex regional system.
OPS2.1.3	Pilot test a smart planned special event system in State 1	This would be a system or server within an existing TMC that deals exclusively with planned special events. This would be full functionality to collect all information and manage the data.

ÍI.

٦

Project	Project	Description
OPS2.1.4	Pilot test a smart planned special event system in State	This would be a system or server within an existing TMC that deals exclusively with planned special events. This would be full
	2	functionality to collect all information and manage the data.
OPS2.2.1	Integrate REGIONAL TMC with two major regional agencies	This project would integrate two major regional agencies into a TMC. This could be transit agencies or EM providers or toll authorities.
OPS2.2.2	Integrate REGIONAL TMC with two major regional agencies	This project would integrate two major regional agencies into a TMC. This could be transit agencies or EM providers or toll authorities.
OPS2.2.3	Integrate REGIONAL TMC with minor local agencies	There may be more minor systems that still have value to the corridor. This could include signal systems from a city that connect a major intermodal facility.
OPS2.2.4	Integrate REGIONAL TMC with minor local agencies	There may be more minor systems that still have value to the corridor. This could include signal systems from a city that connect a major intermodal facility.
OPS2.2.5	STUDY in-state integration (FL, TX, CA, AZ) vs. statewide TMC (MS)	This project is a study to examine the value of integrating TMCs within a state, vs. having a single TMC to control all statewide traffic management functions.
OPS2.2.6	Biloxi/Mobile TMC integration	This will create changes in both systems to allow for joint control of some devices as well as the sharing of information.
OPS2.2.7	Mobile/Pensacola TMC integration	This will create changes in both systems to allow for joint control of some devices as well as the sharing of information.
OPS2.2.8	Pilot test a rural alternate route plan for I-10	This project would determine alternate routes in a rural area for one location. This would identify the routes and place static signs for those routes.
OPS2.2.9	Pilot test an urban alternate route plan for I-10	This project would determine alternate routes in an urban area for one location. This would identify the routes and place static signs for those routes.
OPS3.1.1	Horizon project with port of Jacksonville	This project uses technology to identify cargo on ships before they enter the port to allow operators the opportunity to plan their operations before the cargo arrives.
OP\$3.2.1	Deploy WIMs at all Florida Gulf coast ports	This project would install WIMS at certain ports to verify weights before the trucks leave the port. This will reduce the strain on law enforcement.
OP\$3.3.1	Pilot test HAZMAT routing database across multiple states	This would create a central database for tracking and routing HAZMAT shipments. It would require knowledge of restricted areas and have to have the ability to provide information on shipments when queried.
OP\$3.3.2	Create initial corridor management center HAZMAT database	This project takes the database and creates a management structure around it. This may require a new center or may be integrated into am existing center

Í.

Project	Project	Description
OPS3.4.1	Coordinate with federal agencies to ensure consistent operations of ports and crossings along border and through ports – admin. contract	This project is to provide the necessary administration to coordinate with a wide variety of federal agencies concerning the operations of ports and border crossings.
OP\$3.4.2	Deploy FAST at locations A, B, C, and D	This project will take the current FAST border crossing program and make sure it is deployed at all border crossing opportunities.
OPS3.4.3	Deploy next generation federal security project at locations A, B, C, and D	As the federal government has continued to develop new security projects for border crossings, this project assumes that a new program will be created and initiated along the I-10 corridor within the next ten years
OP\$3.4.4	Expand combined points of entry program across all Gulf states	Take the existing combined point of entry program that is in operation at selected ports, and deploy to all port facilities throughout the gulf coast.
OPS3.5.1	Work with federal agencies to create a secure commercial vehicle credentialing database	This will be a coordinated effort under the corridor administration contract.
OP\$3.5.2	Pilot test of roadside safety inspection in State 1	This is a CVISN project to automate roadside safety inspection and sharing of information.
OP\$3.5.3	Apply roadside safety application across multiple states	This is an expansion of OPS3.5.2 across more states.
OPS4.1.1	See INF.G2.O5	
OPS4.2.1	Pilot smart work zone in State 1	Design and deploy a smart work zone tailored for the specific construction project. This will include roadway sensors, CCTV, DMS, and other technologies as required.
OPS4.2.2	Pilot smart work zone in State 2	Design and deploy a smart work zone tailored for the specific construction project. This will include roadway sensors, CCTV, DMS, and other technologies as required.
OPS4.2.3	Integrate smart work zone into corridor web site	A smart work zone is sometimes integrated into the local TMC, but only in terms of CCTV and possibly data. This project will take all of the outputs available from the smart work zone and make them available on the corridor web site.
OPS4.2.4	Integrate smart work zone into TMC 1	Often times, smart work zones are stand alone. Sometimes the vendor will provide a web site with information but the equipment is not integrated into the local TMC. This project will provide for complete integration of all smart work zone systems into the local TMC to provide full functionality and control.

Ìi.

Project code	Project	Description
OPS4.2.5	Lane Rental Demonstration in State 1	Lane rental is a way of monitoring lane closures in a work zone. The owner must know the lane/mile/hours of closures and then the contractor will be charged for each lane/mile/hour of closure. This way, the contractor has an incentive to minimize the closures to expedite construction.
OPS4.2.6	Integrate lane rental into TMC 2	Lane rental can typically be done outside of the operations group. However, the operations staff members are usually the ones that have the CCTV that can verify the contactors timing. This project will integrate the lane closure mechanism into the TMC for management and verification.
OPS4.2.7	Full concept scope and design for uniform smart work zone	Study the best of the work zones across the corridor and determine a possible uniform smart work zone standard for the entire corridor.
OPS4.2.8	Implementation of a standard smart work zone across the corridor	Implementing the standard designed in OPS4.2.7. No project required.
OPS4.3.1	Increased training for emergency responders along I-10 (nuclear in the SW/ petrochemicals in the Gulf Coast region)	Provide increased training for emergency responders in how to work with transportation agencies. Use existing federal courses or pay to develop one.
OPS4.4.1	Pilot test automated crash reporting with a private service provider	Similar to Onstar, this system would provide a notification to a center when a commercial vehicle has crashed. This will be done with a private sector provider.
OPS4.4.2	Combine automated crash reporting with material load information	This will combine a proven system for OPS4.4.1 with a database of material loads (OPS3.3.1) so that emergency responders know what load is on the truck before they arrive at the scene.
OPS4.5.1	Use cell phones for probes in rural New Mexico to generate travel times for use in incident information sharing	There are several pilot test of using cell phones for probes. None have demonstrated large-scale success to date. This will use the cell phones in a rural environment which addresses many of the operational issues of the current tests. It will supply travel times and test the ability to use for automated incident notification.
OPS4.5.2	Use cell phones for probes in rural Texas to generate travel times for use in incident information sharing	There are several pilot test of using cell phones for probes. None have demonstrated large-scale success to date. This will use the cell phones in a rural environment which addresses many of the operational issues of the current tests. It will supply travel times and test the ability to use for automated incident notification.
OPS4.5.3	Increased use of license plate readers in Florida	License plate readers are already used in Florida for work zones and other projects. This will expand their usage to other applications.
OPS5.1.1	Set up committee to coordinate with businesses to look for joint opportunities	Part of the corridor management contract.

Ì.

Project code	Project	Description
OPS5.1.2	Increase use of credentialing and checking around petroleum facilities along I- 10	The petroleum facilities along the gulf coast are potential terrorist targets. This would use credentialing and other activities to increase security.
OPS5.2.1	See OPS.G1	
OPS6.1.1	Establish stakeholder group with port facilities and determine where improvements are possible	Covered as part of the corridor administration contract.
OP\$6.1.2	Deploy project to reduce congestion in and around a port facility	These will be follow up projects to those identified in OPS5.1.1
OPS6.1.3	Deploy project to reduce congestion in and around a multimodal facility	These will be follow up projects to those identified in OPS5.1.1
OPS6.2.1	Increase capability, range, and size of existing service patrols	Increase number of vehicles, their size, and their capabilities to provide more service on traditional service patrols.
OPS6.2.2	Expand use of Rapid Incident Scene Clearance (RISC) in Florida	This is a specialized program in Florida. Expand its use statewide, and throughout the corridor.
OPS6.2.3	New service patrols in location A	Implementation of service patrols in areas that do not have any currently.
OPS6.2.4	Pilot test video from service patrol to TMC in State A	This project would use video from "cop cams" to send back to a TMC when necessary.
INF1.2.1	Deploy a project that provides ability to get 511 information across multiple states from one state	This project will integrate information from all states via 511.
INF1.2.2	Deploy 511 corridor information in all corridor states	Build out 511 systems in all states.
INF1.3.1	Deploy fiber connections to provide state to state connectivity where appropriate	Where there are gaps in state-owned fiber or communications networks, close those gaps to allow agencies to share information directly.
INF2.1.1	Create a web site with links to web sites for all states within the corridor	A simple corridor web site that just provides a single source to all available state and local traffic information sites.
INF2.1.2	Enhance the existing web site with an email alert system	Provide email alerts to motorists and carriers that sign up for it. They will receive an email any time something unusual is happening on their chosen routes.

ÍI.

Г

Project		
code	Project	Description
INF2.1.3	Provide upgrades and	This is an enhancement for project INF2.1.1.
	enhancements to the	
	corridor web site	
INF2.2.1	Integrate weather	Weather information – especially about storms and warnings – will
	information into corridor	be added to the web site.
	web site	
INF2.3.1	Deploy test Wi-Fi for	Install Wi-Fi along sections of the corridor for use by emergency
	emergency response along	responders (e.g., I-35 bridge collapse used a local wi-fi for sharing
	selected sections of corridor	information).
INF2.4.1	Establish a means of sharing	Create an information exchange network among the corridor TMCs
	information between TMCs	to share information critical to operations.
	along the corridor	
INF2.4.2	Create an instant messaging	This is a subset of INF2.4.1.
	network	
INF2.4.3	Create a "Warmap"	This will create a single web site for all agencies that has all available
		information along I-10.
INF2.5.1	Deployment of 511 in states	Deploy 511 where it is not deployed.
	without	
INF2.5.2	Multi-state coordination	Combination of INF1.2.1 and INF1.2.2.
	and seamless integration	
INF2.6.1	Enhance coordination with	Included in corridor maintenance contract.
	media through web site	
INF3.1.1	Smart Park demonstration	Demonstrate a project that provides advanced notice of parking
	in State 1	availability for trucks.
INF3.1.2	Smart Park demonstration	Demonstrate a project that provides advanced notice of parking
	in State 2	availability for trucks.
INF3.2.1	Provide localized and	Provide a local web site through Wi-Fi and kiosks that address
	regional weather and traffic	regional weather and traffic information at rest stops.
	at parking facilities	

ÍI.

Appendix H

SWOT Analysis

Project Code		Description					щ					
	Cost	Strength	Wcakness	Opportunity	Threat	Champ	ase of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
ADM.1.1.1	I-10 Project Management Contract	This project will provie will include administra potential minor studie Required for corridor to continue to work together	de for consultant suppo tion of committees and s, designs, and implem Requires formal agreement for how to cooperate and consensus on how to move forward	rt for the overall I-10 corr l programs, support for tau entations. The majority of Allows the corridor to pursue multistate opportunities that they otherwise would not be able to	idor management structure. This ik forces and management, and the projects will be let and May limit flexibility for future work because of the formal structure	4	5	4	5	5	462.862	1
ADM2.1.1	Implement Quick Clearance policies	Implement policies in a shoulders within a sho By removing obstacles, accidents and congestion will be reduced	all eight states to both a rt time frame (e.g., 4 ho Requires similar policies be implemented in agencies in all eight states	llow DOTs to require velours). Will serve as a national model and create consistency along the corridor	iicles to be removed from May raise visibility of legal issues and open the states to larger lawsuits	4	5	4	3	3	371.432	37
ADM2.1.2	Enact legislation to limit liability for moving vehicles	Implement legislation agencies in damages to By removing obstacles, accidents and congestion will be reduced	in all eight states to lim vehicles that are moved Requires similar legislation in all eight states; may be difficult to educate people	it the liability of the state d to prevent congestion or Will serve as a national model and create consistency along the corridor	DOTs or other responding hazards for secondary accidents May raise visibility of legal issues and open the states to larger lawsuits	4	3	4	3	3	337.146	66
ADM2.1.3	Move-it laws	Implement legislation Prevents secondary accidents and reduces exposure of pedestrians to traffic	in all eight states that re Difficult to educate people on the correct thing to do	equires people involved in Will serve as a national model and create consistency along the corridor	minor accidents to move their May raise issues with insurance companies that may lobby against these laws	4	5	4	3	3	371.432	38
ADM2.1.4	Move over laws for emergency responders	Implement legislation that are operating on d require traffic to stop to Provides a safer work environment for emergency responders as well as reduces the potential for secondary accidents	that requires traffic to m he roadside. This is spec o allow an emergency v Difficult to educate people on the correct thing to do	nove one lane over or slow cifically for stopped vehicl ehicle to pass them. Will serve as a national model and create consistency along the corridor	r down for emergency vehicles es, not the current laws that	4	5	4	3	3	371.432	39
ADM2.1.5	Create standard polices and procedures for planned special events	Planned special events marathons. This projec identification, through coordination, and stan Creating a standard approach will improve notification and driver understanding which will reduce confusion and improve safety	include everything fror t would create standard event cleanup. This gu dard signing for the eve This will take a long time to get each agency to change (even slightly) their procedures for such events	n road construction and n d procedures for use by pu ide will cover issues such a ent. Will serve as a national model and create consistency along the corridor	naintenance, to golf outings and blic agencies from initial event as media contacts, agency There are often different views on how to best accomplish these goals – may raise concerns from some sectors of the industry	3	4	4	2	4	337.146	67

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
ADM2.3.1	Multi-state OW/OS vehicle permit (standard envelope)	Create a standard enve of I-10. Any vehicle th throughout the corrido Expedites permitting across the corridor	lope (height, width, ler at is within the envelop r. In order to meet all state requirements, the envelope may be roo small	egth, weight) for commerce will be able to more qui Will serve as a national model and create consistency along the corridor	ial vehicles that applies along all thy and easily get permits May create future pressure from commercial vehicle industry to increase the envelope	3	4	4	3	4	358.575	52
ADM2.3.2	Pilot test for one-stop credentialing along the Gulf Coast	Create a center that wi state boundaries within Improves commercial vehicle operations and efficiencies	Il allow commercial veh n the Gulf Coast region Individual state laws and credentials may be difficult to consolidate into one operation	nicles to obtain all permits Will serve as a national model	and credentials for trips across Raises the risk that an operator unfamiliar with a state policy or law may allow an illegal permit	3	3	2	3	4	307.146	87
ADM2.3.3	Create a corridorwide credentialing center	Create a center that wi state boundaries within Improves commercial vehicle operations and efficiencies	Il allow commercial veh all eight states. Individual state laws and credentials may be difficult to consolidate into one consolidate	nicles to obtain all permits Will serve as a national model	and credentials for trips across Raises the risk and consequences of a mistake. Also, may be difficult to manage with all eight states	3	2	2	4	5	335.718	68
ADM2.3.4	Pilot test OS/OW automated permitting across multiple states	This project is to allow envelope. Tthis does n Improves commercial vehicle operations and efficiencies	one-stop shopping for ot involve other creden	OS/OW permits. They d tialing, just the OS/OW p	o not have to fit the standard ermits	3	2	2	3	5	314.289	81
ADM2.3.5	Add automated permitting to a corridorwide	DROP – if the center If the pilot is complete	in ADM2.3.3 is created d first, this project show	l first, then project ADM2 Ild be included as a task in	.3.4 will be piloted in the center. ADM2.3.3.							
ADM2.4.1	credentialing center Share response plans and determine areas for increased coordination	The DOTs need to ma accidents, etc.). This p contract, or could be a This is a core function of the corridor: to coordinate multi-state activities	eet and share response p roject could be adminis separated working grou More than just the DOTs need to be involved for it to be effective	olans for anticipated emerg tered under the overall co up. May open door to increased coordination with other groups	encies (e.g., hurricanes, nuclear ridor contract management The coordination may identify new areas that require additional unplanned resources	3	3	4	2	4	344.289 320.003	63
ADM2.5.1	Plan/design a corridorwide data archiving system	Many third party vend and services. The shari project will assemble the them in a format that it Builds from other information sharing projects. Involves new groups to I-10 Corridor	ors and commercial fle ng of real time informa he traffic related data (r interested parties can ea Must work from inventory of data available from legacy systems	ets depend on historical da tion rarely provides a usea eal time traffic, incidents, sily use. This project is for Will serve as a national model	ta to help better plan their routes ble archive of historic data. This road construction, etc.) and put the initial design of the system. May have influence of different universities or national labs looking for this work	3	4	3	2	4	320.003	78
ADM2.5.2	Build the initial corridor archiving system	Building from ADM2. Builds from other information sharing projects	5.1, this project will cr Requires a long-term commitment and a customer service focus	eate the initial deployment Provides a valuable source of data for a wide range of applications	of an archiving system. Many different agencies must also make a long-term commitment to share information	3	2	3	4	5	352.861	56

Project Code		Description					Ease					
	G	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Tota	Rank
ADM2.5.3	Evolution 1 of	This will build from A	DM2.5.2 and provide a	additional features and enl	nancements				•			
	archiving system	Will be developed from a working system using needs of users	Requires a working a system first	Can benefit from what other systems are doing throughout the industry	May have specific demands from some user groups if another service is being provided by another agency	3	3	3	2	5	327.146	74
FI1.1.1	New Gulfport TMC	A new TMC in the G	ulfport region. Includes	all software, hardware, an	d field devices.	h	6	5	2	6	205 719	17
		TMCs are a core tool for managing traffic – all urban areas benefit from a TMC	Software, especially if the first time for an agency, is expensive and difficult to manage	There are several other TMCs in the region that can provide input on requirements	Too many demands from management can cause scope creep and make the project unwieldy	4	4	j	3	4	595./18	17
FI1.1.2	Deploy TMC 2	This is a place holder t TMCs are a core tool for managing traffic – all urban areas benefit from a TMC	for another TMC that r Software, especially if the first time for an agency, is expensive and difficult to manage	nay be created in the regio There are several other TMCs in the region that can provide input on requirements	n. Too many demands from management can cause scope creep and make the project unwieldy	3	4	5	3	4	375.718	31
FI1.1.3	Deploy TMC 3	This is a place holder t TMCs are a core tool for managing traffic – all urban areas benefit from a TMC	for another TMC that r Software, especially if the first time for an agency, is expensive and difficult to manage	nay be created in the regio There are several other TMCs in the region that can provide input on requirements	n. Too many demands from management can cause scope creep and make the project unwieldy	3	4	5	3	4	375.718	32
FI1.2.1	Identify key assets along corridor that are not covered as part of an urban TMC	This report will work already managed by a intent is to identify wh	with the eight states alo TMC. This would inclu inch locations require so	ng the corridor to identify 1de remote bridges, tunnel me form of traffic manage	key assets that may not be s, or key interchanges. The ment or surveillance	3	5	4	3	4	375.718	33
		This report will meet the key operational focus of the corridor by identifying gaps in coverage	There are a wide variety of interests among the eight states that may create too many key assets	Will serve as a national model for remote management	Remote management may not be feasible							
FI1.2.2	Integrate key asset	This project will deplo	y field equipment at the	e key assets, and provide ir	ntegration into the nearest TMC.							
	surveillance into existing TMC	Leverages existing	May have long lines	Will serve as a national	There may be jurisdictional	3	4	4	5	4	401.433	14
EI2 / 1	Upgrading fog	TMC infrastructure	of communication	model	issues to contend with.							
112.4.1	detection on Bayway Bridge	design and deploymen	it.	ig log detection system on	the Dayway Dhuge. It includes	5	4	4	5	3	417.147	8
		Many lessons learned and local experience with the current system	May have to make design concessions to leverage some legacy equipment	Can use information from other systems deployed around the world	The new system must exceed the capabilities of the old system							
FI2.4.2	Additional dust warning system locations in Arizona	This will include the c in Arizona.	lesign and deployment o	of additional dust warning	systems in designated locations	4	4	4	5	3	397.147	16
		This system will use a proven technology from current deployments	May not be an opportunity for many upgrades or enhancements	Will be useful in many other locations	May need to deploy over larger stretches of I-10 for which funding is not yet available		·	·	2	5		

Project Code		Description					Eas					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
FI2.4.3	Initial deployment of dust warning system in New Mexico	This project will inclu Arizona for New Mexi	de full design and deplo ico.	oyment of dust warning sys	stems similar to those used in	3	4	h	5	3	377 1/7	29
		This system will use a proven technology from current deployments in neighbor states	The state may not know all of the requirements for such a system	Will have an opportunity to tie several states together	The learning curves on an initial technology deployment for an agency are steep	J	4	4	J	5	5//.14/	29
FI2.4.4	Initial deployment of dust warning system in Texas	This project will inclu Arizona for Texas.	de full design and deplo	oyment of dust warning sys	stems similar to those used in	3	4	4	5	3	377.147	30
		This system will use a proven technology from current deployments in neighbor states	The state may not know all of the requirements for such a system	Will have an opportunity to tie several states together	The learning curves on an initial technology deployment for an agency are steep							
FI2.4.5	Integrating the systems into regional information sharing	This project will take regional information s	he information availab haring system – either a	le from the dust warning s a regional TMC or an info	vstems and integrate them into a rmation exchange network.	2	5	4	5	4	398.576	15
		The field systems are working and proven	Software always has issues, especially when integrating into legacy systems	Can become a new regional standard	May be cause issues with the existing regional information system							
FI2.5.1	Pilot test WIM in Mississippi	This project involves t Mississippi. WIM and virtual	he design and deploym	ent of an initial virtual wei May be integrated with	gh station along I-10 in Other agencies involved in	3	5	4	3	3	351.432	57
		weigh stations are becoming more mature and	on an initial technology deployment for an	other states in the near future for a corridor system	operations and enforcement may have issues with the project							
FI2.5.2	Additional WIM	Commonplace This project will deplo	agency are steep by additional virtual wei	gh stations similar to those	already deployed.							
	deployments in Florida	Proven technology in		May be integrated with		3	5	4	3	3	351.432	58
		Florida		other states in the near future for a corridor system								
FI2.5.3	Pilot Test WIM in state 2	This project involves t Mississippi. WIM and virtual weigh stations are becoming more mature and commonplace	he design and deploym The learning curves on an initial technology deployment for an agency are steep	ent of an initial virtual wei May be integrated with other states in the near future for a corridor system	gh station along I-10 in Other agencies involved in operations and enforcement may have issues with the project	2	4	4	3	3	314.289	82

Project Code		Description					Eas					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
FI2.5.4	Integrate WIM with TMC1	The virtual weigh statt time to the local TMC system and provide a t Most WIM systems have the ability to send the information to another computer built in	on in one location will C. Enforcement is still ex ool for determining targ Software	be integrated so that all in spected to occur in the field geted enforcement. May provide additional information for archiving or real time systems in the future	formation is transmitted in real d, but the TMC will monitor the May be cause issues with the existing TMC	2	3	4	3	3	297.146	91
FI2.5.5	Integrate WIM with TMC2	The virtual weigh statt time to the local TMC system and provide a t Most WIM systems have the ability to send the information to another computer built in	ion in one location will C. Enforcement is still ex ool for determining targ Software	be integrated so that all in: spected to occur in the field geted enforcement. May provide additional information for archiving or real time systems in the future	formation is transmitted in real d, but the TMC will monitor the May be cause issues with the existing TMC	2	3	4	3	3	297.146	92
F12.5.6	Integrate with PrePass	This project would ini include verifying the I help PrePass check its Both systems use the same technology	egrate information from rePass trucks are near ir customers and give the Requires integrating two legacy software packages: one local and one national	n the virtual weigh stations in weight what they current states more confidence in 1 Could provide a national means of expanding PrePass or other systems with greater confidence	with PrePass. This could dy say they are at. This would PrePass. PrePass may not want to participate; they get paid by making sure their customers bypass stations; virtual WIM may negatively impact their	2	3	4	5	5	388.576	21
OP\$1.1.1	Pilot test integrated signals in state 1	This project would pil cargo in and out of in Signal systems have been integrated into TMCs in other locations	ot test integrating signal rermodal facilities faster Software	ls with freeway operations. and more efficiently. May prove to be a model of how intermodal facilities interact with local ITS systems	revenue The intent is to help move Need to find ideal location for it to be beneficial	1	3	4	4	3	298.575	90
OP\$1.2.1	Pilot test automated incident detection in state 1	This project will desig AID systems have been around for decades, so the concept is mature	n and deploy and AID s Requires specific operations to prove effective	system in one TMC, with If proven, could be effectively used in other locations	a focus on I-10. Cell phones often work faster, so may have limited success	1	2	4	2	3	238.574	103
OP\$1.3.1	THETA - Implement basic capabilities with state of Florida	Create and deploy a sy activities and real time Uses some legacy equipment and systems	stem to provide real tin planning Initial emphasis is just for selected facilities	e information to specific l Can provide good information across the entire Gulf region when fully deployed	ocations to aid in evacuation	5	3	4	4	3	378.575	27

	st	£	SS	Ŷ.	ä	qt	nt	us.	80	Ite	al	ř.
OP\$1.3.2	THETA - Implement basic capabilities with state of Mississippi; implement "almost real time" map updates with traffic and weather	Create and deploy a sy activities and real time	rstem to provide real tir planning in Mississipp	ne information to specific i.	locations to aid in evacuation	5	3	4	4	3	378.575	28
		Leverage work completed in Florida	Initial emphasis is just for selected facilities	Can provide good information across the entire Gulf region when fully deployed								
OP\$1.3.3	THETA - Collaborati with all sponsoring states to achieve capabilities, economies of scale, and system architectures	e This effort will take th the entire Gulf region. Leverages work already completed	e work completed in Fl The system will provic There will be a lot of stakeholders that need to be involved	lorida and Mississippi and le an initial system for the Can provide good l information across the entire Gulf region when fully dealowed	will expand its use throughout region. May have to broaden the number of stakeholders and increase the complexity of the	5	3	4	3	4	381.432	24
OP\$1.3.4	THETA - Develop stage 2 capabilities (evacuation across state lines, contra flow, (evacuation shelters)	This effort will build u THETA to function a Leverages work already completed and provides features that take it beyond current TMC capabilities	pon the initial deployn s a regional resource for The complexity of this system is more than the other stages	Can provide good information across the entire Gulf region when fully deployed	When dealing with multiple legacy systems, there may be increased costs and delays	5	3	4	4	5	427.147	3
OP\$1.3.5	THETA - Implement stage 2 with Alabama, Louisiana	This effort will build u THETA to function a Leverages work already completed and provides features that take it beyond current TMC capabilities	upon the initial deployn s a regional resource for The complexity of this system is more than the other stages	nent work to create addition all. Can provide good information across the entire Gulf region when fully deployed	what features that are necessary for When dealing with multiple legacy systems, there may be increased costs and delays	5	3	4	3	4	381.432	25

A-49

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$1.3.6	THETA - Implement stage 2 with Texas	This effort will build u THETA to function a	1pon the initial deployn s a regional resource for	nent work to create additional.	onal features that are necessary for	_	_			,		
		Leverages work already completed and provides features that take it beyond current TMC capabilities	The complexity of this system is more than the other stages	Can provide good information across the entire Gulf region when fully deployed	When dealing with multiple legacy systems, there may be increased costs and delays	5	3	4	3	4	381.432	26
OP\$1.4.1	TIMTOW - private sector certification for towers	Uses existing proposed Towing companies mu the appropriate certifie	l program to provide a 1 ust attend training and o cation. For incidents on	neans of certifying towers demonstrate they have the I-10, only approved towe	for work on critical links. right equipment before getting rs will be contacted.							
		The program exists and has been successfully implemented in other states	It requires a new level of cooperation and communication between the public agencies and the	Faster and safer removal of incidents along all of I 10	May be significant political - pressure from the towing industry against this	3	4	4	4	5	404.29	13
OD61 ()		A	towing companies									
OP\$1.4.2	create a Gulf region incident management system	A new system in the C separate system or ope	ration, or it could be in	e incident management ac cluded as part of an existir	ross state lines. I his could be a ng system.	3	3	3	4	5	370.004	40
		Regional coordination is critical near state boundaries	Only applies to events in specific locations or beyond a certain size	Fills a needed gap in coordination	May overlap some other system's responsibilities							
OP\$1.4.3	Share communications infrastructure with	This project would ide access to transportatio where this is needed a	entify specific locations n communications infra nd then deploy a single	where emergency responde astructure. The project wo test within one of those re	ers would benefit by having uld first find several locations gions.							
	emergency providers	Optimal. use of limited resources	May strain communications network	May be able to use funding for redundant communications on other projects	Additional users may require upgrades to system that otherwise would not be required	2	2	3	4	5	332.861	69
OP\$1.5.1	Provide EM training for DOT staff throughout the corridor	While DOT staff are a that the DOT staff kn the EM staff so the DU to interact well with the Inexpensive and allows DOT staff to	always looking for EM s ow what the EM staff r OT staff. It will create a ne new staff. DOT staff are already overloaded	takeholders to join the DC esponsibilities are. This tra wareness and understandii With greater understanding comes	DT committees, it is important ining will illustrate the needs of ng. This will allow the DOT staff	3	5	4	3	4	375.718	34
		better understand the responsibilities of EM staff during emergency situations	7	better ideas for how to work together								
OPS2.1.1	Add major special event information to the corridor web site	In addition to constru events that impact I-1	ction information, add 0.	information on planned sp	pecial events. These would be any	3	3	4	4	4	362.861	50
		Special events can have a major impact on I-10, so information on them is important	It is difficult to maintain current information since the information is often collected by different groups within an agency	Will serve as a national example and will provide information on events that otherwise fall between the gaps	If the information is not maintained, you can lose credibility quickly							

Project Code		Description					Eas					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$2.1.2	Develop a smart planned special event system for the corridor	This would be a modu	le or server within a mo	ore complex regional syster	n.	3	2	3	3	4	307.146	88
		Takes project OPS2.1.1 from information to management	Requires some existing regional system	Will serve as a national example and allows the corridor to function as a corridor	Requires an operational focus for all states to work properly							
OPS2.1.3	Pilot test a smart planned special event system in state 1	This would be a system events. This would be	n or server within an ex full functionality to col	isting TMC that deals exc lect all information and m	lusively with planned special anage the data.	2	2	3	2	3	241.431	100
		Increased capabilities for current systems	Increased responsibilities for maintaining information	Will serve as a national example	Often the information relies on a completely separate group within the organization							
OP\$2.1.4	Pilot test a smart planned special event system in state 2	This would be a syster events. This would be	n or server within an ex full functionality to col	isting TMC that deals excl lect all information and m	lusively with planned special anage the data.	2	2	3	2	3	241.431	101
		Increased capabilities for current systems	Increased responsibilities for maintaining information	Will serve as a national example	Often the information relies on a completely separate group within the organization							
OPS2.2.1	Integrate REGIONAL TMC with two major regional agencies	This project would int EM providers or toll a	egrate two major regior uthorities.	nal agencies into a TMC. T	This could be transit agencies or	3	3	3	5	4	367.147	42
	0	This is the best evolution of TMCs	Legacy systems always require special care when integrating	Will serve as a model for the rest of the corridor	Depending on the agency and their system, the relative value may not be cost effective							
OP\$2.2.2	Integrate REGIONAL TMC with two major regional agencies	This project would int EM providers or toll a	egrate two major regior uthorities.	nal agencies into a TMC. T	This could be transit agencies or	3	3	3	5	4	367.147	43
		This is the best evolution of TMCs	Legacy systems always require special care when integrating	Will serve as a model for the rest of the corridor	Depending on the agency and their system, the relative value may not be cost effective							
OPS2.2.3	Integrate REGIONAL TMC with minor local agencies	There may be more m from a city that conne	inor systems that still h ct a major intermodal fa	ave value to the corridor. T acility.	This could include signal systems	2	2	3	4	4	308.575	85
	0	This is the best evolution of TMCs	Legacy systems always require special care when integrating	Will serve as a model for the rest of the corridor	Depending on the agency and their system, the relative value may not be cost effective							

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$2.2.4	Integrate REGIONAL TMC with minor local agencies	There may be more m from a city that conne	inor systems that still ha	ave value to the corridor. T acility.	This could include signal systems	2	2	3	4	4	308.575	86
		This is the best evolution of TMCs	Legacy systems always require special care when integrating	Will serve as a model for the rest of the corridor	Depending on the agency and their system, the relative value may not be cost effective							
OP\$2.2.5	STUDY in-state integration (FL, TX, CA, AZ) vs. statewide TMC (MS)	This project is a study TMC to control all sta	to examine the value of atewide traffic managem	f integrating TMCs within nent functions.	a state versus having a single	2	ç	6	5	ĥ	410 576	6
		This is critical for the evolution of the corridor ITS systems and how they will	The result may be that conditions within individual states determine what is best	By having a single philosophy, it will make it easier to plan for	If a recommendation is made, some states may need to change their way of approaching integrations	J	J	4	J	4	418.970	0
		interact	for that state	corridor for the future	megrations							
OP\$2.2.6	Biloxi/Mobile TMC integration	This will create change of information. This is the purpose of a corridor - to provide multistate traffic management	es in both systems to all Working with two different software systems to get both improved is difficult	ow for joint control of son Will serve as a model for the corridor	ne devices as well as the sharing May not have much to apply across the entire corridor	3	2	4	5	4	367.147	44
OPS2.2.7	Mobile/Pensacola TMC integration	This will create chang of information. This is the purpose of a corridor - to provide multistate traffic	es in both systems to all Working with two different software systems to get both	ow for joint control of son Will serve as a model for the corridor	ne devices as well as the sharing May not have much to apply across the entire corridor	3	2	4	5	4	367.147	45
OP\$2.2.8	Pilot test a rural alternate route plan for I-10	This project would de routes and place static	termine alternate routes signs for those routes.	in a rural area for one loca	ation. This would identify the	2	4	3	3	4	321.432	75
		Provides needed work as part of managing incidents on I-10		Will serve as a national or corridor example	May require the cooperation of many agencies that are not used to cooperating							
OP\$2.2.9	Pilot test an urban alternate route plan for I-10	This project would der routes and place static	termine alternate routes signs for those routes.	in an urban area for one l	ocation. This would identify the	2	4	3	3	4	321.432	76
		Provides needed work as part of managing incidents on I-10		Will serve as a national or corridor example	May require the cooperation of many agencies that are not used to cooperating.							
OP\$3.1.1	Horizon project with port of Jacksonville	This project uses techn opportunity to plan th	ology to identify cargo eir operations before th	on ships before they enter e cargo arrives.	the port to allow operators the	3	2	h	h	4	362.861	51
		Improves port operations significantly	Requires information sharing with private providers	Could become a national or regional model	Initial project is with just one carrier	J	5	4	4	4	302.801	51
OP\$3.2.1	Deploy WIMs at all Florida Gulf Coast	This project would ins will reduce the strain o	tall WIMS at certain po on law enforcement.	orts to verify weights befor	e the trucks leave the port. This	h	5	h	h	2	202 961	10
	ports	Will improve port operations as well as enforcement activities	Need a formal agreement with the port operators and potentially the shippers and carriers	Will serve as a corridor model	May have issues with some carriers or shippers	4	2	4	4	3	<i>392</i> .801	19

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$3.3.1	Pilot test HAZMAT routing database across multiple states	This would create a ce knowledge of restricted queried. This is a needed gap in incident management	ntral database for tracki d areas and have to have Security measures must be in place for safety`	ing and routing HAZMA ⁷ the ability to provide info This could serve as a national example and even be expanded to a larger effort at a later date	I shipments. It would require ormation on shipments when Requires existing information on many routes throughout the corridor; this may not be readily available	2	2	3	4	5	332.861	70
OP\$3.3.2	Create initial corridor management center HAZMAT database	This project takes the center or may be integ This is the first evolution of the pilot	database and creates a n rated into am existing c A new center may be required but will be	nanagement structure arou enter. Will serve as a national or regional model	ind it. This may require a new May require new procedures for carriers that will require	3	2	4	3	5	348.575	60
OP\$3.4.1	Coordinate with federal agencies to ensure consistent operations of ports and crossings along border and through ports - admin. contract	test This project is to prov agencies concerning th	expensive ide the necessary admin ee operations of ports ar	istration to coordinate wit Id border crossings.	education h a wide variety of federal	3	3	4	5	5	408.576	9
		This project provides the skills necessary to navigate through the federal agencies and their requirements so that projects may move forward	Need someone familiar with all border and port issues	Providing this kind of coordination support is likely to build great relationships for many future efforts	Since there are many different federal (and state) agencies involved, it may be difficult to get all of them on board							
OP\$3.4.2	Deploy FAST at locations A, B, C, and D	This project will take to border crossing opport The system has been proven in other locations	the current FAST borde tunities May be expensive to implement?	r crossing program and m It will provide national consistency	ake sure it is deployed at all	2	3	4	4	5	367.147	46
OP\$3.4.3	Deploy next generation federal security project at locations A, B, C, and	As the federal governn project assumes that a ten years.	nent has continued to d new program will be cr	evelop new security projec eated and initiated along t	ts for border crossings, this he I-10 corridor within the next							
OP\$3.4.4	D Expand combined points of entry program across all Gulf states	Take the existing com port facilities through It is a proven system	bined point of entry pro out the Gulf Coast. Cost?	pgram that is in operation It will provide a unified	at selected ports and deploy to all There may be operational issues	1 3	1	1	1	1	100.001 384.29	104 23
OP\$3.5.1	Work with Federal	that should be relatively easy to implement This will be a coordina	ated effort under the co	approach for all ports, easing shipping administration rridor administration cont	or institutional issues at some ports that prevent the adoption of this program. ract.							
0000000	secure commercial vehicle credentialing database		1.1	C · · · · · · · · · · · · · · · · · · ·		2	2	3	3	5	311.432	84
0133.3.2	safety inspection in state 1	Provides enhanced information sharing to expedite roadside inspections	, to automate roadside	Provides an opportunity to match other similar programs around the nation	ing of mornation.	1	1	1	1	1	100.001	105

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$3.5.3	Apply roadside safety application across multiple states	This is an expansion o Provides enhanced information sharing to expedite roadside inspections	f OPS3.5.2 across mor	e states. Provides an opportunity to match other similar programs around the nation		2	2	2	4	5	315.718	79
OPS4.1.1	See INF.G2.O5	1				1	1	1	1	1	100.001	106
OP\$4.2.1	Pilot smart work zone in state 1	Design and deploy a s roadway sensors, CCT Some COTS packages exist; most technologies used are not new	mart work zone tailorec 'V, DMS and other tec Must be tailored to the project – do not create a generic system	I for the specific constructi hnologies as required. The overall concept and any integration efforts can be shared with other agencies in the I-10 corridor	on project. This will include Work zones are highly visible and active areas where problems occur on a regular basis; make sure the work zone capabilities are well defined in advance	2	3	4	3	3	297.146	93
OP\$4.2.2	Pilot smart work zone in state 2	Design and deploy a s roadway sensors, CCT Some COTS packages exist; most technologies used are not new	mart work zone tailorec 'V, DMS and other tec Must be tailored to the project – do not create a generic system	d for the specific constructi hnologies as required. The overall concept and any integration efforts can be shared with other agencies in the I-10 corridor	on project. This will include Work zones are highly visible and active areas where problems occur on a regular basis; make sure the work zone capabilities are well defined in advance	2	3	4	3	3	297.146	94
OP\$4.2.3	Integrate smart work zone into corridor web site	A smart work zone is s data. This project will available on the corrid This is a critical piece of information for the users	oometimes integrated in take all of the outputs o or web site. Information from work zones is often less complete than regular sensors – need to temper expectations	to the local TMC, but onl available from the smart w Can be applied throughout the corridor	y in terms of CCTV and possibly ork zone and make them Agencies may have a reluctance to allow others to "see" into their work zone	2	4	4	5	5	405.719	11
OP\$4.2.4	Integrate smart work zone into TMC 1	Often times, smart wo information but the ec complete integration of control. This is a critical element for operators	rk zones are stand alon µipment is not integrat f all smart work zone s Software	e. Sometimes the vendor w ted into the local TMC. T ystems into the local TMC Once completed, future work zones should be easily integrated into the same TMC	ill provide a web site with his project will provide for to provide full functionality and TMC vendor may have issues with rights	2	2	3	5	3	305.718	89

Project Code		Description					Eas					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	se of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$4.2.5	Lane rental demonstration in state 1	Lane rental is a way of lane/mile/hours of closs This way, the contract Operationally provides incentive for	monitoring lane closur ures, and then the cont or has an incentive to m This is a new concept to many agencies and	es in a work zone. The owne ractor will be charged for ea inimize the closures to expe Very successful in Europe (and other locations i	r must know the ch lane/mile/hour of closure. dite construction. Contractor industry may have ssues with this concept	2	3	3	4	5	350.004	59
OP\$4.2.6	Integrate lane rental	contractors to improve the way they manage traffic in the work zones Lane rental can typical	may require some administrative changes ly be done outside of th	e operations group. Howeve	er, the operations staff are							
	into TMC 2	usually the ones that he lane closure mechanism It is an evolution of the lane rental concept	ave the CCTV that can n into the TMC for ma Software and administrative	verify the contactors timing nagement and verification. Could be applied throughout the corridor	. This project will integrate the	2	2	3	5	5	354.29	53
			changes within an agency may be required									
OP\$4.2.7	Full concept scope and design for uniform smart work zone	Study the best of the w standard for the entire	rork zones across the con corridor.	rridor and determine a possi	ble uniform smart work zone	2	3	3	5	5	371.433	35
		Should be many existing efforts to get lessons learned from	There may be unique characteristics in various states that prevent a single standard from working over the corridor	Uniform look and feel of M work zones will help long is distance carriers with expectations and therefore improve safety	/endor community may have ssues or concerns							
OPS4.2.8	Implementation of a standard smart work zone across the corridor	Implementing the stan	dard designed in OPS4	.2.7. No project required.		2	3	2	5	5	354.29	54
OP\$4.3.1	Increased training for emergency responders along I-10 (nuclear in the SW/petrochemicals in the Gulf Coast region)	Provide increased train existing federal courses	ing for emergency respo or pay to develop one.	onders in how to work with	transportation agencies. Use	2	5	Ę	2	2	269 575	61
		Multi-agency cooperation is critical to successful operations in an emergency	May have difficulty convincing them to attend	Could be used across the entire corridor and nationally		5	ļ	ļ	5	5	508.575	41
OPS4.4.1	Pilot test automated crash reporting with a private service provider	Similar to Onstar, this crashed. This will be d	system would provide a one with a private secto	notification to a center wh r provider.	en a commercial vehicle has	2	1	3	4	4	291.432	95
		Onstar has proven very effective over the years; safety will be increased and response times decreased	Commercial vehicles may have special needs that the private sector may be reluctant to be involved with	Huge potential market 1	.iability may be a larger issue							

Project Code		Description					ц,					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	ase of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OPS4.4.2	Combine automated crash reporting with material load information	This will combine a p emergency responders Leap ahead in inciden	roven system for OPS4 know what load is on t Must combine two	4.4.1 with a database of mat the truck before they arrive Huge potential market	erial loads (OPS3.3.1) so that at the scene Maintaining the database in	2	2	2	4	5	315.718	80
		management	new systems		real time will be difficult							
OPS4.5.1	Use cell phones for probes in rural New Mexico to generate travel times for use in incident information	There are several pilot date. This will use the of the current tests. It notification.	everal pilot test of using cell phones for probes. None have demonstrated large scale success to vill use the cell phones in a rural environment which addresses many of the operational issues nt tests. It will supply travel times and test the ability to use for automated incident .									
	sharing	A relatively cheap alternative	If it works	Applicable across the corridor and nation	Requires a detailed investigation into the AID portion	2	2	2	5	4	312.861	83
OP\$4.5.2	Use cell phones for probes in rural Texas to generate travel times for use in incident information	There are several pilot date. This will use the of the current tests. It notification.	test of using cell phon cell phones in a rural will supply travel time	es for probes. None have de environment which address s and test the ability to use f	emonstrated large scale success to es many of the operational issues for automated incident				_	_		
	sharing	A relatively cheap alternative	If it works	Applicable across the corridor and nation	Requires a detailed investigation into the AID portion	2	2	2	5	5	33/.14/	65
OP\$4.5.3	Increased use of license plate readers in	License plate readers a usage to other applicat	re already used in Flor tions.	ida for work zones and othe	r projects. This will expand their							
	Florida	Using a proven technology and application	Must make sure application is appropriate	Large potential for use in other states and nationally	What works in Florida may not work in other states (particularly outside of the I-10 Corridor)	3	3	3	4	4	345.718	61
OP\$5.1.1	Set up committee to coordinate with businesses to look for	Part of the corridor m	anagement contract.									
	joint opportunities					2	2	3	5	5	354.29	55
OP\$5.1.2	Increase use of credentialing and checking around petroleum facilities	The petroleum facilitie and other activities to	es along the gulf coast increase security .	are potential terrorist target	s. This would use credentialing							
	along I-10	May have potential fo funding from homeland security	r Not typical DOT projects	Potential for application in other corridors	Will have to work with several agencies and private providers – will be difficult	3	4	3	3	4	341.432	64
OP\$5.2.1	See OPS.G1	20000000000000000000000000000000000000				1	1	1	1	1	100.001	107
OP\$6.1.1	Establish stakeholder group with port facilities and determine where improvements are pageible	Covered as part of the	corridor administratio	n contract.								
	Possible					3	4	5	5	4	418.576	7

Project Code		Description					Ease					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
OP\$6.1.2	Deploy project to reduce congestion in and around a port facility	This will have to follow	w up from OP\$5.1.1.			2	2	4	3	3	280.003	97
OP\$6.1.3	Deploy project to reduce congestion in and around a multimodal facility	This will have to follow	w up from OP\$5.1.1.			2	2	4	3	3	280.003	98
OP\$6.2.1	Increase capability, range, and size of existing service patrols	Increase number of ve patrols. Service patrols are proven very cost effective means of addressing incidents and congestion	hicles, their size, and th Expensive and may require administrative changes within an organization	eir capabilities to provide	more service on traditional service Traditional problems with towing industry	2	3	4	5	4	364.29	48
OP\$6.2.2	Expand use of Rapid Incident Scene Clearance (RISC) in Florida	This is a specialized pr Proven program	ogram in Florida. Expa	nd its use statewide and the constant of the c	hroughout the corridor. e	3	5	4	5	3	394.29	18
OP\$6.2.3	New service patrols in location A	Implementation of ser Service patrols are proven very cost effective means of addressing incidents and concertion	vice patrols in areas tha Expensive and may require administrative changes within an organization	t don't have any currently	r. Traditional problems with towing industry	2	2	3	2	3	241.431	102
OP\$6.2.4	Pilot test video from service patrol to TMC in state A	This project would use This is critical information for responders	video from "cop cams New technology – may require extensive infrastructure.	" to send back to a TMC Application in all markets across the corridor and nation	when necessary. Unsure how users will react	2	3	4	5	4	364.29	49
INF1.2.1	Deploy a project that provides ability to get 511 information across multiple states from one state	This project will integ 511 is implemented in most regions along the corridor	rate information from a Implementation and enhancements have been typically slower	ll states via 511. Application nationally	Must deal with all carriers and systems	2	2	4	5	5	371.433	36
INF1.2.2	Deploy 511 corridor information in all corridor states	Build out 511 systems Proven technology	than expected in all states. Where there are issues, they are often time consuming to solve	Application nationally	May be some issues specific to certain states	2	2	3	4	5	332.861	71

Project Code		Description					Eas					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	e of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
INF1.3.1	Deploy fiber connections to provide state to state connectivity where appropriate	Where there are gaps i agencies to share infor	n state-owned fiber or o mation directly.	communications networks,	close those gaps to allow	3	4	4	5	5	425.719	4
	uppropriate	Excellent shared use of resources	f Fiber may be expensive	Working towards a larger long-term vision of full interconnectivity	May have legal or policy issues with interstate trade and communications	U	-	-		2		-
INF2.1.1	Create a web site with links to web sties for all states within the corridor	A simple corridor web information sites	site that just provides a	single source to all availab	le state and local traffic	3	5	5	5	5	460.005	2
		Small and quick	Lack of uniformity	First step to larger shared information projects								
INF2.1.2	Enhance the existing web site with an email alert system	Provide email alerts to something unusual is l	motorists and carriers nappening on their chos	that sign up for it. They wi sen routes.	ll receive an email any time	3	4	4	5	5	425.719	5
		Already in use in several locations		Easy access to many people to share incident and event information	Requires a commitment on the operations people to keep the system up and running							
INF2.1.3	Provide upgrades and enhancements to the corridor web site	This is an enhancemen	nt for project INF2.1.1.			2	3	4	3	5	345 718	62
		Will begin with a proven system	Needs and features unknown at this time	Second step to a larger shared information system		2	5	T	5	,	549.710	02
INF2.2.1	Integrate weather information into corridor web site	Weather information,	especially about storms	and warnings, will be add	ed to the web site.	2	2	3	4	5	332.861	72
		several locations	display information is personal	shared information system								
INF2.3.1	Deploy test Wi-Fi for emergency response along selected sections of corridor	Install Wi-Fi along sec used a local wi-fi for sl	tions of the corridor fo naring information).	r use by emergency respon	ders (e.g., 1-35 bridge collapse	2	2	3	3	4	287.146	96
		Relatively proven technology	Expensive	May have ability to share with public or tap into private providers	If shared, need controls for emergencies							
INF2.4.1	Establish a means of sharing information between TMCs along	Create an information operations.	exchange network amo	ong the corridor TMCs to	share information critical to	2	2	,	Ę	ŗ	201 (22	20
	the corridor	Similar to the successful use in I-95	May have firewall issues with some agencies	Provides a service to the entire corridor	If used properly, may require changes in operations at some agencies	3	2	4	5	5	391.433	20
INF2.4.2	Create an instant messaging network	This is a subset of INI	2.4.1.			2	4	3	5	5	388.576	22

Project Code		Description					Ease o					
	Cost	Strength	Weakness	Opportunity	Threat	Champ	of Implement	Oper. Feas.	Enabling	Multi-State	Total	Rank
INF2.4.3	Create a "Warmap"	This will create a sing Builds off of INF2.1.3	le web site for all agenci 3 Sometimes it is too busy to be useful	es that has all available inf Provides a service to the entire corridor	ormation along I-10. Requires some change in operations for most agencies	2	4	4	5	5	405.719	12
INF2.5.1	Deployment of 511 in states without 511	Deploy 511 where it i	s not deployed.			2	2	3	3	3	262.86	99
		Proven technology	Where there are problems with deployments, those problems are usually time consuming to solve	Provide complete coverage across the entire corridor								
INF2.5.2	Multi-state coordination and seamless integration	Combination of INF1	1.2.1 and INF1.2.2.			2	2	3	4	5	332.861	73
INF2.6.1	Enhance coordination with media through web site	Included in corridor n	naintenance contract.			3	4	3	3	5	365.718	47
INF3.1.1	Smart Park demonstration in state	Demonstrate a project	t that provides advanced	l notice of parking availabi	lity for trucks.	1	1	1	1	1	100.001	108
		Build off other projects nationally	Not a proven system yet	Has corridor application	Requires cooperation between private and public sector			·			100.001	100
INF3.1.2	Smart Park	Demonstrate a project	t that provides advanced	l notice of parking availabi	lity for trucks.							
	demonstration in state	Build off other projects nationally	Not a proven system yet	Has corridor application	Requires cooperation between private and public sector	1	1	1	1	1	100.001	109
INF3.2.1	Provide localized and regional weather and traffic at parking facilities	Provide a local web sin at rest stops.	te through Wi-Ki and k	iosks that address regional	weather and traffic information	3	3	4	5	5	408.576	10
		Proven technology and ease of implementation	Must build off of INF1.2.1 and INF1.2.2, as well as integrate with kiosk	Corridorwide application		2	2	-	-	-		

Appendix I

Initial Project Schedule

Attached

ID	Task Name	Duration	
0		Qtr	Qtr 2 Qtr 3 Qtr 4
1	ADM.1.1.1 I-10 Project Management Contract	60 mons	
2	ADM2.1.1 Implement Quick Clearance policies (shoulder or in-lane?) ADM2.1.2 Enset lanielation to limit liability for maxima unkinion	18 mons	
3 🛄	ADM2.1.2 Enact legislation to limit liability for moving venicles	18 mons	
5 🖬	ADM2.1.4 Move over laws for emergency responders	18 mons	
6	ADM2.1.5 Create Demo standard polices and procedures for planned special events	18 mons	
7	ADM2.1.5 Full Deployment of standard polices and procedures for planned special events	18 mons	
8	ADM2.2.1 Develop a memorandum of understanding	6 mons	
9	ADM2.3.1 Multi-state OW/OS vehicle permit (standard envelop) DEMO	4 mons	
10	ADM2.3.1 Multi-state OW/OS vehicle permit (standard envelop) Full deployment	4 mons	
12	ADM2.3.3 Create a corridor-wide credentialing anong ne our cottat Dawo	8 mons	
13 🔳	ADM2.3.4 Pilot test OS/OW automated permitting across multiple states DEMO	4 mons	
14	ADM2.3.4 Pilot test OS/OW automated permitting across multiple states Full deployment	8 mons	
15	ADM2.3.5 Add automated permitting to a corridor wide credentialing center	6 mons	
16	ADM2.4.1 Share response plans and determine areas for increased coordination. Internal	12 mons	
17	ADM2.4.1 Share response plans and determine areas for increased coordination. Full formal ADM2.5.1 Plan/design a corridor wide data archiving system.	8 mons	
19	ADM2.5.2 Build the initial corridor archiving system	6 mons	
20	ADM2.5.3 Evolution 1 of archiving system	12 mons	
21 🔳	Develop common ITS Planning objectvives for the corridor	12 mons	
22	Apply for corridor funding	6 mons	
23	INF1.1.1 New Guitport TMC INF1.1.1 New Cuitport TMC Enkoronamente	18 mons	
25	INF1.1.2 Deploy TMC 2	12 mons	
26	INF1.1.2 Deploy TMC 2 Enhancements	12 mons	
27 🔳	INF1.1.3 Deploy TMC 3	18 mons	
28	INF1.1.3 Deploy TMC 3 Enhancements	12 mons	
29 🔳	INF1.2.1 Identify key assets along corridor that are not covered as part of an urban TMC DEMO	6 mons	
30	INF1.2.1 Identify key assets along corridor that are not covered as part of an urban TMC DEPLOY INF1.2.1 Identify key assets along corridor that are not covered as part of an urban TMC ETH. DEPLOY	6 mons	
32	NF1.2.2 Integrate key assets surveillance into existing TMC INTIAL	4 mons	
33	INF1.2.2 Integrate key asset surveillance into existing TMC FULL	6 mons	
34	INF2.1.1 0 deploy CCTV	48 mons	
35	INF2.2.1 0 deploy traffic detecotrs	48 mons	
36	INF2.3.1 U deploy DMS INF2.4.1 Lineraring for detection on Provider	48 mons	
38	INF2.4.2 Additional dust warning system locations in Arizona	6 mons	
39	INF2.4.3 Initial deployment of dust warning system in New Mexico	6 mons	
40	INF2.4.4 Initial deployment of dust warning system in Texas	6 mons	
41	INF2.4.5 Integrating the systems into regional information sharing DEMO	6 mons	
42	INF2.4.5 Integrating the systems into regional information sharing FULL Deployment	6 mons	
43	INF2.5.1 Pilot Test WM in Mississippi	12 mons	
45 1	INF2.5.3 Pilot Test WM in State 2	12 mons 12 mons	
46	INF2.5.4 Integrate WM with TMC1	4 mons	
47	INF2.5.5 Integrate VMM with TMC2	4 mons	
48 🔢	INF2.5.6 Integrate with PrePass DEMO	12 mons	
49 💼	INF2.5.6 Integrate with PrePass Deployment	6 mons	
50	INF2.6.1 Develop/deploy oversize vehicle detection system DEMO	6 mons	
52 🖼	OPS1 1 1 Pilot test integrated signals in State 1	6 mons	
53	OPS1.1.1 Pilot test integrated signals in three more states	6 mons	
54 🔳	OPS1.2.1 Pilot test automated incident detection in State 1	4 mons	
55 🔳	OPS1.3.1 THETA - Implement basic capabilities with state of Florida.	12 mons	
56 🔳	OPS1.3.2 THETA - Implement basic capabilities with state of Mississippi. Implement 'almost real time' ma	12 mons	
57	OPS1 3.3 THETA - Collaborate with all sponsoring states to achieve capabilities, economies of scale, an	6 mons	
58	OPS1.3.4 THETA - Develop stage 2 capabilities (evac. Across state lines, contra flow, evac. shelters). ODS1.2.5 THETA - Involument stars 2 with Alabama Lawinings	12 mons	
60	OPS1.3.6 THETA - Implement stage 2 with Texas.	6 mons	
61 📰	OPS1.4.1 TIMTOW - private sector certification for towers Pilot test	6 mons	
62	OPS1.4.1 TIMTOW - private sector certification for towers Initial Deployment	6 mons	
63	OPS1.4.1 TIMTOW - private sector certification for towers Full deployment	6 mons	
64	OPS1.4.2 Create a Gulf region incident management system	12 mons	
65 🔜	OPS1.4.3 Share communications infrastructure with emergency providers DEMO	12 mons	
67	OPS1.5.1 Provide EM training for DOT staff throughout the corridor	24 mons	
68	OPS2.1.1 Add major special event information to the corridor web site	3 mons	
69 🛅	OPS2.1.2 Develop a smart planned special event system for the corridor	6 mons	
70	OPS2.1.3 Pilot test a smart planned special event system in State 1	6 mons	
71	OPS2.1.4 Pilot test a smart planned special event system in State 2 OPS2.2.1 Integrate REGIONAL TMC with 2 major regional agencies	6 mons	
73	OPS2.2.2 Integrate REGIONAL TMC with 2 major regional agencies	12 mons	
74 🔳	OPS2.2.3 Integrate REGIONAL TMC with minor local agencies	12 mons	
75 📰	OPS2.2.4 Integrate REGIONAL TMC with minorlocal agencies	12 mons	
76	OPS2.2.5 Examine the Ways the States Are Currently Deploying TMCs for Suggested improvements	12 mons	
77	UPS2.2.5 billox/Mobile TMC integration OPS2.2.7 Mobile Renearche TMC integration	12 mons	
79	OPS2.2.8 Pilot test a rural alternate route plan for I-10	6 mons	
80	OPS2.2.9 Pilot test an urban alternate route plan for I-10	6 mons	
81 🔢	OPS3.1.1 Horizon project with port of Jacksonville	12 mons	
82	OPS3.2.1 Deploy Wilks at all Florida Gulf coast ports	12 mons	
83	UPS3.3.1 Pilot test HAZMAT routing database across multiple states DESIGN ODS3.3.1 Pilot test HAZMAT routing database across multiple states INITIAL DEDLOVM®NT	18 mons	
85	OPS3.3.1 Pilot test HAZMAT routing database across multiple states FURTHER DEPLOYMENT	9 mons	
86 🗔	OPS3.3.2 Create initial corridor management center HAZMAT database DESIGN	12 mons	
87 🔢	OPS3.4.2 Deploy FAST at locations A, B, C, and D	18 mons	
88 🔢	OPS3.4.3 Deploy New Federal Project at locations A, B, C, and D	18 mons	
89 🔜	OPS3.4.4 Expand combined points of entry program across all Gulf states	6 mons	
91	OPS3.5.2 Pilot test of roadside safety inspection in State 1	12 mone	
92 🔢	OPS3.5.3 Apply roadside safety application across multiple states.	12 mons	
93 📑	OPS4.2.1 Pilot smart work zone in State 1 DESIGN AND DEPLOY	12 mons	
94	OPS4.2.2 Pilot smart work zone in State 2 DEPLOY	6 mons	
95	UP54 2.3 Integrate smart work zone into corridor web site	6 mons	
97 11	OPS4.2.5 Lane Rental Demonstration in State 1	6 mone	
96	OPS4.2.6 Integrate lane rental into TMC 2	6 mons	
99	OPS4.2.7 Full concept scope and design for uniform smart work zone	6 mons	
100	OPS4.2.8 Implementation of a standard smart work zone across the corridor	6 mons	
101	OPS4.3.1 Increased training for emergency responders along I-10 (nuclear in the SW / petrochemicals i	24 mons	
102	UPS4.4.1 Pilot test automated crash reporting with a private service provider	18 mons	
103	OF 34.4.2 Compare automated crash reporting with material load information OPS4.5.1 Lise cell phones for project in used New Mexico to generate travel times for use in incident inter- tional times for use in incident inter-	12 mons	
105	OPS4.5.2 Use cell phones for probes in rural Texas to generate travel times for use in incident informati	18 mons	
106 🔢	OPS4.5.3 Increased use of license plate readers in Florida	6 mons	
107 🔳	OPS5.1.1 Set up committee to coordinate with businesses to look for joint opportunities	18 mons	
108	OPS5.1.2 Increase use of credentialing and checking around petroleum facilities along I-10	18 mons	
109	OPS5.2.1 Coordinate with law enforcement to target areas of concern	24 mons	
110	OPS6.1.1 Establish stakeholder group with port facilities and determine where improvements are possible OPS6.1.2 Deploy project to reduce conception in and around a next facility.	10 mons	
112	OPS0.1.0 Deploy project to reduce congestion in and around a multimodal facility	12 mons	
113 📰	OPS6.2.1 Increase capability, range, and size of existing service patrols	18 mons	
114 🔳	OPS6.2.2 Expand use of Rapid Incident Scene Clearance (RISC) in Florida	18 mons	
115 🔳	OPS6.2.3 New service patrols in location A	18 mons	
116 💷	UPS0.∠.4 Pilot test video from service patrol to TMC in State A	12 mons	

Appendix J Project Cost Estimates

Assumptions

- Average hourly consultant rates are \$125 fully loaded.
- Travel costs are \$1,000 per person per trip.
- Equipment costs are from the USDOT National ITS Deployment Database.
- Unless otherwise noted, no facilities costs are assumed.
- Unless otherwise noted, maintenance costs are assumed to be by DOT staff. They are identified but not included in the total cost.
- Staff costs assume mid to senior level hours to manage or implement a project at a straight \$100 per hour.

Summary costs are shown below. The full cost estimate spreadsheet is included on the accompanying CD.

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	I-10 project				
	management				
ADM.1.1.1	contract	-	-	411,000	411,000
	Implement quick				
	clearance policies				
	(shoulder or in-				
ADM2.1.1	lane?)	-	-	-	-
	Enact legislation to				
	limit liability for				
ADM2.1.2	moving vehicles	-	-	-	-
ADM2.1.3	Move-it laws	-	-	-	-
	Move over laws for				
	emergency				
ADM2.1.4	responders	-	-	-	-
	Create standard				
	polices and				
	procedures for				
	planned special				
ADM2.1.5	events	35,250	-	-	35,250
	Task under				
ADM2.2.1	ADM1.1.1	35,250	-	39,000	74,250
	Multi-state				
	OW/OS vehicle				
	permit (standard				
ADM2.3.1	envelope)	35,250	-	64,000	99,250

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	Pilot test for one-				
	stop credentialing				
	along the Gulf	25.250			25.250
ADM2.3.2	Coast	35,250	-	-	35,250
	Create a				
	corridorwide			221 000	221 000
ADM2.3.3	credentialing center	-	-	221,000	221,000
	Pilot test OS/OW				
	automated				
	multiple states	35 250		221.000	256 250
ADIV12.3.4	Add automated	55,250	-	221,000	290,290
	permitting to a				
	corridorwide				
ADM2 3 5	credentialing center	35,250	-	221,000	256.250
11010121019	Share response	55,250		221,000	2,0,2,0
	plans and determine				
	areas for increased				
ADM2.4.1	coordination			58,000	58,000
	Plan/design a			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	corridorwide data				
ADM2.5.1	archiving system	191,500			191,500
	Build the initial				
	corridor archiving				
ADM2.5.2	system		241,500		241,500
	Evolution 1 of				
ADM2.5.3	archiving system			134,000	134,000
	Task under				
	ADM1.1.1				-
	Task under				
	ADM1.1.1				-
	New Gulfport				
FI1.1.1	ТМС		937,000	154,000	1,091,000
FI1.1.2	Deploy TMC 2		937,000	154,000	1,091,000
FI1.1.3	Deploy TMC 3		937,000	154,000	1,091,000
	Identify key assets				
	along corridor that				
	are not covered as				
	part of an urban				
FI1.2.1	ТМС	54,000	251,000	903,000	1,208,000
	Integrate key asset				
	surveillance into				
FI1.2.2	existing TMC		84,500	451,500	536,000

H.

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
FI2.1.1					-
FI2.2.1					-
FI2.3.1					-
	Upgrading fog				
	detection on				
FI2.4.1	Bayway Bridge			77,000	77,000
	Additional dust				
	warning system				
FI2.4.2	locations in Arizona			77,000	77,000
	Initial deployment				
	of dust warning				
	system in New				
FI2.4.3	Mexico			77,000	77,000
	Initial deployment				
	of dust warning				
FI2.4.4	system in Texas			77,000	77,000
	Integrating the				
	systems into				
	regional	<i>(</i> , , , , , , , , , ,			
F12.4.5	information sharing	64,500		156,000	220,500
	Pilot test WIM in				(/1.500
F12.5.1	Mississippi	441,500			441,500
	Additional WIM				
	deployments in		2 5 25 000		2 525 000
F12.5.2	Florida Dilasa W/IDA		2,525,000		2,525,000
	Pilot test WIM in	661 500			6/1 500
F12.5.5	State 2	441,500			441,500
EI2 5 4	Integrate WIM	77.000			77.000
F12.3.4		//,000			//,000
EI2 5 5	Integrate WIM	77.000			77.000
F12.3.3	With TMC2	//,000			//,000
EI2 5 (Integrate with	201 500	1 2(2 000		1 (52 500
F12.3.0	Develor / develor	291,300	1,362,000		1,035,300
	Develop/depiloy				
	detection systems to				
	selected sites along				
FI2 6 1	I_10				-
112.0.1	Pilot test integrated				-
OPS1 1 1	signals in State 1	2/9 500	/08 000		657 500
0101.1.1	D:1_t t 1	247,700	400,000		07,500
	incident detection				
OPS1 2 1	in State 1	62 500			(2 500
Or51.2.1	III State I	00,500			63,300

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	THETA -				
	Implement basic				
	capabilities with				
OPS1.3.1	state of Florida		431,000		431,000
	THETA -				
	Implement basic				
	capabilities with				
	state of Mississippi;				
	implement "almost				
	real time" map				
	updates with traffic				
OPS1.3.2	and weather		431,000		431,000
	THETA -				
	Collaborate with all				
	sponsoring states to				
	achieve capabilities,				
	economies of scale,				
	and system				
OPS1.3.3	architectures	154,000			154,000
	THETA - Develop				
	stage 2 capabilities				
	(evacuation across				
	state lines, contra				
	flow, evacuation				
OPS1.3.4	shelters).	229,000			229,000
	THETA -				
	Implement stage 2				
	with Alabama,				
OPS1.3.5	Louisiana	353,000			353,000
	THETA -				
	Implement stage 2				
OPS1.3.6	with Texas	353,000			353,000
	TIMTOW - private				
	sector certification				
OPS1.4.1	for towers	78,000			78,000
	Create a Gulf				
	region incident				
OPS1.4.2	management system		156,000		156,000
	Share				
	communications				
	infrastructure with				
	emergency				
OPS1.4.3	providers		-		-

H.

ÌÌ.

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	Provide EM				
	training for DOT				
	staff throughout the				
OPS1.5.1	corridor	50,000		1,150,000	1,200,000
	Add major special				
	event information				
	to the corridor web				
OPS2.1.1	site		12,500		12,500
	Develop a smart				
	planned special				
	event system for the				
OPS2.1.2	corridor	254,000			254,000
	Pilot test a smart				
	planned special				
	event system in				
OPS2.1.3	State 1		100,000		100,000
	Pilot test a smart				
	planned special				
	event system in				
OPS2.1.4	State 2		100,000		100,000
	Integrate				
	REGIONAL TMC				
	with two major				
OPS2.2.1	regional agencies		306,000		306,000
	Integrate				
	REGIONAL TMC				
	with two major				
OPS2.2.2	regional agencies		306,000		306,000
	Integrate				
	REGIONAL TMC				
	with minor local				
OPS2.2.3	agencies		306,000		306,000
	Integrate				
	REGIONAL TMC				
	with minor local				
OPS2.2.4	agencies		306,000		306,000
	Examine the wavs				
	the states are				
	currently deploying				
	TMCs for suggested				
OP\$2.2.5	improvements		312.000		312.000
	Biloxi/Mobile		512,000		512,000
OPS2 2 6	TMC integration		302 000		302 000
0102.2.0			502,000		502,000

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	Mobile/Pensacola				
OPS2.2.7	TMC integration		302,000		302,000
	Pilot test a rural				
	alternate route plan				
OPS2.2.8	for I-10	70,500			70,500
	Pilot test an urban				
	alternate route plan				
OPS2.2.9	for I-10	70,500			70,500
	Horizon project				
	with port of				
OP\$3.1.1	Jacksonville		352,000		352,000
	Deploy WIMs at all				
	Florida Gulf coast				
OP\$3.2.1	ports		3,350,000		3,350,000
	Pilot test				
	HAZMAT routing				
	database across				
OP\$3.3.1	multiple states	483,000	156,000	206,000	845,000
	Create initial				
	corridor				
	management center				
OPS3.3.2	HAZMAT database	189,500			189,500
	Coordinate with				
	federal agencies to				
	ensure consistent				
	operations of ports				
	and crossings along				
	border and through				
	ports – admin.				
OPS3.4.1	contract				-
	Deploy FAST at				
	locations A, B, C,				
OPS3.4.2	and D		508,000		508,000
	Deploy New				
	Federal Project at				
	locations A, B, C,				
OPS3.4.3	and D		508,000		508,000
	Expand combined				
	points of entry				
	program across all				
OPS3.4.4	Gulf states		108,000		108,000

Project code Project Demonstration Deployment Deployment Project Work with federal Work with federal Work Work <th></th>	
Project code Project Total Costs Total Costs Total Cost Cost Work with federal	
Work with federal	
agencies to create a	
secure commercial	
vehicle credentialing	
OPS3.5.1 database 368,500 3	68,500
Pilot test of	
roadside safety	
inspection in State	
OPS3.5.2 1 356,000 3	56,000
Apply roadside	
safety application	
across multiple	
OPS3.5.3 states 352,000 3	52,000
OPS4.1.1 See INF.G2.O5 -	
Pilot smart work	
OPS4.2.1 zone in State 1 203,000 2	03,000
Pilot smart work	
OPS4.2.2 zone in State 2 100.000 1	00,000
Integrate smart	
work zone into	
OPS4.2.3 corridor web site 53.000	53.000
Integrate smart	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
work zone into	
OPS4.2.4 TMC 1 153.000 1	53.000
Lane Rental	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Demonstration in	
OPS4.2.5 State 1 53.000	53.000
Integrate lane rental	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
OPS4.2.6 into TMC 2 153.000	53.000
Full concept scope	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
and design for	
uniform smart work	
OPS4.2.7 zone 103.000	03.000
Implementation of	
a standard smart	
work zone across	
OPS4.2.8 the corridor 100.000	00.000
Increased training	,
for emergency	
responders along I-	
10 (nuclear in the	
SW/petrochemicals	
in the Gulf Coast	
OPS4.3.1 region) 60.000 120.000 300.000 4	80,000

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	Pilot test automated				
	crash reporting with				
	a private service				
OPS4.4.1	provider	-			-
	Combine				
	automated crash				
	reporting with				
	material load				
OPS4.4.2	information	243,500			243,500
	Use cell phones for				
	probes in rural New				
	Mexico to generate				
	travel times for use				
	in incident				
OPS4.5.1	information sharing	356,000			356,000
	Use cell phones for				
	probes in rural				
	Texas to generate				
	travel times for use				
	in incident				
OPS4.5.2	information sharing	356,000			356,000
	Increased use of				
	license plate readers				
OPS4.5.3	in Florida		678,000		678,000
	Set up committee to				
	coordinate with				
	businesses to look				
	for joint				
OP\$5.1.1	opportunities	-			-
	Increase use of				
	credentialing and				
	checking around				
	petroleum facilities				
OPS5.1.2	along I-10	-			-
OPS5.2.1	See OPS.G1				-
	Establish				
	stakeholder group				
	with port facilities				
	and determine				
	where				
	improvements are				
OPS6.1.1	possible	-			-

Hin .

Project codeDemonstration Total CostsDeployment Total CostsDeployment Total CostProject CostDeploy project to reduce congestion in and around a				Initial	Full	Total
Project codeProjectTotal CostsTotal CostsTotal CostCostDeploy project to reduce congestion in and around a		_	Demonstration	Deployment	Deployment	Project
Deploy project to reduce congestion in and around aImage: congestion in and around aImage: congestion 203,000OPS6.1.2port facility203,000203,000Deploy project to reduce congestion in and around aImage: congestion in and around aImage: congestion 203,000Image: congestion 203,000OPS6.1.3multimodal facility203,000203,000Increase capability, range, and size of existing serviceImage: congestion in 1,500,000Image: congestion in 1,500,000OPS6.2.1patrols1,500,0001,500,000	Project code	Project	Total Costs	Total Costs	Total Cost	Cost
reduce congestionreduce congestionImage: congestionin and around a203,000203,000OPS6.1.2Deploy project to reduce congestionImage: congestionin and around aImage: congestionImage: congestionOPS6.1.3multimodal facility203,000Increase capability, range, and size of existing serviceImage: congestionOPS6.2.1patrols1,500,000Expand use of Rapid IncidentImage: congestion		Deploy project to				
In and around a OPS6.1.2port facility203,000Deploy project to reduce congestion in and around a203,000203,000OPS6.1.3multimodal facility203,000203,000Increase capability, range, and size of existing service1,500,0001,500,000OPS6.2.1patrols1,500,0001,500,000		reduce congestion				
OPS6.1.2port facility203,000203,000Deploy project to reduce congestion in and around a OPS6.1.3in and around a multimodal facility203,000203,000Increase capability, range, and size of existing serviceIncrease capability, range, and size of existing service1,500,0001,500,000OPS6.2.1Expand use of Rapid IncidentIncrease capability, range, and size of existing service1,500,0001,500,000		in and around a				
Deploy project to reduce congestion in and around aIncrease capability, range, and size of existing service203,000203,000OPS6.2.1Increase capability, range, and size of existing service1,500,0001,500,000OPS6.2.1Expand use of Rapid IncidentIncrease in the second s	OPS6.1.2	port facility		203,000		203,000
reduce congestion in and around areduce congestion in and around areduce congestionOPS6.1.3multimodal facility203,000203,000Increase capability, range, and size of existing servicerange, and size of existing service1,500,0001,500,000OPS6.2.1patrols1,500,0001,500,0001,500,000Expand use of Rapid IncidentIncidentIncidentIncident		Deploy project to				
in and around a multimodal facility203,000203,000Increase capability, range, and size of existing service1,500,0001,500,000OPS6.2.1patrols1,500,0001,500,000Expand use of Rapid Incident1,500,0001,500,000		reduce congestion				
OPS6.1.3multimodal facility203,000203,000Increase capability, range, and size of existing serviceincrease capability, range, and size of existing serviceincrease capability, range, and size of existing serviceincrease capability, range, and size of existing serviceOPS6.2.1patrols1,500,0001,500,000Expand use of Rapid Incidentincrease capability, range, and size of existingincrease capability, range, and size of existing serviceincrease capability, range, and size of existing service		in and around a				
Increase capability, range, and size of existing serviceIncrease capability, range, and size of existing serviceIncrease capability, range, and size of rexisting serviceOPS6.2.1patrols1,500,0001,500,000Expand use of Rapid IncidentIncreaseIncreaseIncrease	OPS6.1.3	multimodal facility		203,000		203,000
range, and size of existing service Image: and size of existing service OPS6.2.1 patrols Expand use of Rapid Incident Image: analysis		Increase capability,				
existing service existing service 1,500,000 OPS6.2.1 patrols 1,500,000 Expand use of expand use of expand use of Rapid Incident expand use of expand use of		range, and size of				
OPS6.2.1 patrols 1,500,000 1,500,000 Expand use of Rapid Incident Rapid Incident Incident		existing service				
Expand use of Rapid Incident	OPS6.2.1	patrols		1,500,000		1,500,000
Rapid Incident		Expand use of				
		Rapid Incident				
Scene Clearance		Scene Clearance				
OPS6.2.2 (RISC) in Florida 750,000 750,000	OPS6.2.2	(RISC) in Florida		750.000		750.000
New service patrols		New service patrols		, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,
OPS6.2.3 in location A 2.500.000 2.500.000	OPS6 2 3	in location A		2,500,000		2,500,000
Pilot test video	0100.2.5	Pilot test video		2,900,000		2,900,000
from service patrol		from service patrol				
OPS6.2.4 to TMC in State A 233.000 233.000 233.000	OPS6 2 4	to TMC in State A	233.000			233.000
Deploy a project	0130.2.4	Doplay a project	255,000			235,000
thet provides shility		that provides shilitar				
that provides ability		that provides ability				
information across		information across				
multiple states from	DELAI	multiple states from	250.000			250.000
INF1.2.1 one state 258,000 258,000	INF1.2.1	one state	258,000			258,000
Deploy 511		Deploy 511				
corridor		corridor				
information in all		information in all				
INF1.2.2 corridor states 306,000 458,000 764,000	INF1.2.2	corridor states		306,000	458,000	764,000
Deploy fiber		Deploy fiber				
connections to		connections to				
provide state to		provide state to				
state connectivity		state connectivity				
INF1.3.1 where appropriate \$30,156,000 \$30,156,000	INF1.3.1	where appropriate		\$ 30,156,000		\$ 30,156,000
Create a web site		Create a web site				
with links to web		with links to web				
sties for all states		sties for all states				
INF2.1.1 within the corridor 101,000 101,000	INF2.1.1	within the corridor			101,000	101,000
Enhance the		Enhance the				
existing web site		existing web site				
with an email alert		with an email alert				
INF2.1.2 system 101,000	INF2.1.2	system		101,000		101,000

Hin .

			Initial	Full	Total
		Demonstration	Deployment	Deployment	Project
Project code	Project	Total Costs	Total Costs	Total Cost	Cost
	Provide upgrades				
	and enhancements				
	to the corridor web				
INF2.1.3	site	202,000			202,000
	Integrate weather				
	information into				
INF2.2.1	corridor web site	102,000			102,000
	Deploy test Wi-Fi				
	for emergency				
	response along				
	selected sections of				
INF2.3.1	corridor	333,000	756,000		1,089,000
	Establish a means of				
	sharing information				
	between TMCs				
INF2.4.1	along the corridor		262,000		262,000
	Create an instant				
INF2.4.2	messaging network		101,000		101,000
INF2.4.3	Create a "Warmap"		101,000		101,000
	Deployment of 511				
INF2.5.1	in states without				-
	Multistate				
	coordination and				
INF2.5.2	seamless integration				-
	Enhance				
	coordination with				
	media through web				
INF2.6.1	site		101,000		101,000
	Smart Park				
	demonstration in				
INF3.1.1	State 1	295,500			295,500
	Smart Park				
	demonstration in				
INF3.1.2	State 2	295,500			295,500
	Provide localized				
	and regional				
	weather and traffic				
INF3.2.1	at parking facilities	113,500			113,500
		\$ 8,532,000	\$ 54,631,500	\$ 5,864,500	\$ 69,028,000

il.r

Appendix K Relevant ITS Standards

Identifier Code	Name	Description
ANSI TS284	Commercial Vehicle Safety	An electronic data interchange (FDI) transaction set to
711 (01 10201	Reports	allow authorized parties to electronically request and
	Reports	send reports on information related to the safe operation
		of commercial road vehicles, such as inspection reports
		of commercial road venicies, such as inspection reports,
		material incident reports
ANGL TC205		A EDL
AINSI 13285	Commercial Venicle Safety	An EDI transaction set to permit enforcement officials,
		government administrators, and other authorized parties
	Information Exchange	to retrieve information electronically on the safety
		performance, regulatory compliance, and credentials
		status of commercial motor vehicles, carriers, and
		drivers.
AINSI 15286		An EDI transaction set that can be used by owners,
	Credentials	leasers, and drivers of commercial motor vehicles to
		apply electronically for credentials necessary to legally
		operate those vehicles and by authorizing jurisdictions to
		electronically transmit credential data to applicants and
		other authorized entities.
IEEE 1455-1999	Standard for Message	Standard messages for commercial vehicle, electronic
	Setting for Vehicle/	toll, and traffic management applications.
	Roadside Communications	
IEEE 1512-2006	Standard for Common	Standards describing the form and content of the
	Incident Management	incident management messages sets for emergency
	Message Sets for use by	management systems (EMS) to traffic management
	Emergency Management	systems (TMS) and from emergency management
	Centers	systems to the emergency telephone system (ETS) or
		(E911).
IEEE 1512.1-2006	Standard for Common	Enables consistent standardized communications among
	Incident Management	incident management centers, fleet and freight
	Message Sets for use by	management centers, information service providers,
	Emergency Management	emergency management centers, planning subsystems,
	Centers	traffic management centers, and transit management
		centers.
IEEE 1512.3-2006	Standard for Hazardous	Enables consistent standardized communications among
	Material Incident	incident management centers, HAZMAT teams, police,
	Management for use by	local government, fire, special emergency, and
	Emergency Management	emergency management centers.
	Centers	

Identifier Code	Name	Description
IEEE 1909.1-2006	Standard for Wireless	This standard describes a resource manager that
	Access in Vehicular	arbitrates requests for transponder usage.
	Environments (WAVE)	
	Resource Manager	
IEEE P1512.4	Standard for Common	This standard will address traffic incident management
	Traffic Incident	message sets which will be exchanged by and between
	Management messages Sets	mobile data terminals in response vehicles including
	for use in Entities External	mobile command posts and to their respective response
	to Centers	information will be standard and produce the peeded
		response(s). This standard will be limited to common
		message sets for use by emergency management
		including transportation fire/rescue enforcement
		HazMat etc
ITE TM 1 03	Standard for Functional	This document contains data elements for roadway links
112 111 1109	Level Traffic Management	and for incidents and traffic-disruptive roadway events.
	Data Dictionary	Includes data elements for traffic control, ramp
	,	metering, traffic modeling, video camera control traffic,
		parking management and weather forecasting, as well as
		data elements related to detectors, actuated signal
		controllers, vehicle probes, and dynamic message signs.
ITE TM 2.01	Message Sets for External	A message set standard for communication between
	TMC Communications	traffic management centers and other ITS centers,
		including information service providers, emergency
		management systems, missions management systems,
		and transit management systems.
TTE TMDD 2.1	Traffic Management Data	This document contains data elements for roadway links
	Dictionary and Message	and for incidents and traffic-disruptive roadway events.
	Sets for External TMC	Includes data elements for traffic control, ramp
	Communications	metering, traffic modeling, video camera control traffic,
		data elements related to detectors, actuated signal
		controllers vehicle probes and dynamic message signs
		The document also contains the message sets for
		communication between traffic management centers and
		other intelligent transportation system (ITS) centers.
		including information service providers, emergency
		management systems, missions management systems,
		and transit management systems.
NTCIP 1101	Simple Transportation	A set of rules and protocols for organizing, describing,
	Management Framework	and exchanging transportation management information
		between transportation management applications and
		transportation equipment such that they interoperate
		with each other. (Formerly TS 3.2)

Identifier Code	Name	Description
NTCIP 1103	Transportation	Specifies a set of rules and procedures for exchanging
	Management Protocols	information with a minimum of overhead to provide an
		interoperability standard for transportation-related
		devices that operate over bandwidth-limited
		communications links.
NTCIP 1201	Global Object Definitions	This document defines those pieces of data that are
		likely to be used in multiple device types such as
		actuated signal controllers and dynamic message signs.
		Examples of this data include time, report generation,
		scheduling concepts, etc. (Formerly TS 3.4)
NTCIP 1205	Object Definitions for	Database for closed circuit television systems. The
	Closed Circuit Television	format of the database is identical to other NTCIP
	Camera Control	devices and uses ASN.1 representation. Targeted devices
		include cameras, lenses, video switches, and positioning
		controls for aiming and identification, such as video text
		overlays. The standard will support various levels of
		conformance. (Formerly TS 3.CCTV)
NTCIP 1206	Object Definitions for	Specifies object definitions that may be supported by
	Data Collection and	data collection and monitoring devices, such as roadway
	Monitoring Devices	loop detectors. (Formerly TS 3.DCM)
NTCIP 1207	Object Definitions for	This standard deals with the data required to control
	Ramp Meter Control	and monitor a ramp meter.
	Units	
NTCIP 1208	Object Definitions for	Deals with the data needed to control a video switch
	Closed Circuit Television	enabling multiple monitors to view multiple video feeds.
	Switching	
NTCIP 1209	Data Element Definitions	Object definitions that are specific to and guide the data
	for Transportation Sensor	exchange content between advanced sensors and other
	Systems	devices in an NTCIP network. Advanced sensors
		include video-based detection sensors, inductive loop
		detectors, sonic detectors, infrared detectors, and
		microwave/radar detectors. (Formerly TS 3.EP- TSS)
NTCIP 1210	Field Management	I his document will define the objects necessary to
	Stations-Part 1: Object	manage a field master. A field management station
	Definitions for Signal	would be used to implement a polling scheme whereby
	System Master	the field management station could be programmed by a
		central controller (or other management stations) to poll
		its agents. I hese agents could be actuated signal
		controllers, ramp meters, dynamic message signs, or
		other NTCIP conformant equipment.
NTCIP 1402	I CIP Incident	Data objects for detecting, verifying, prioritizing,
	Management (IM) Objects	responding to and clearing unplanned events (accidents,
		weather conditions, crime, etc.), as well as information
		for travelers. (Formerly TS 3.TCIP-IM)

Identifier Code	Name	Description
NTCIP 2001	Class B Profile	This communications protocol standard can be used for
		interconnecting transportation and traffic control
		equipment over low bandwidth channels. It establishes a
		common method of interconnecting ITS field
		equipment such as traffic controllers and dynamic
		message signs, defines the protocol and procedures for
		establishing communications between those
		components, and references common data sets to be
		used by all such equipment.
SAE J1746	ISP-Vehicle Location	A referencing format for information service provider
	Referencing Standard	(ISP)-to-vehicle and vehicle-to-ISP references. This
		standard will reflect the cross-streets profile of the
		current location reference message specification (LRMS)
		document as expressed in the National Location
		Referencing Information Report (SAE J2374).
SAE J2313	On-Board Land Vehicle	A general specification that prescribes protocol methods
	Mayday Reporting	which enable vendors with different communication
	Interface	methods to communicate with response agencies in a
		standard format.
SAE J2354	Message Set for Advanced	A basic message set using the data elements from the
	Traveler Information	ATIS data dictionary needed by potential information
	System (ATIS)	service providers to deploy ATIS services and to provide
		the basis for future interoperability of ATIS devices.
SAE J2366/1	ITS Data Bus - IDB-C	A physical interface device (connector) that will ensure
	Physical Layer	compatibility between vehicles and aftermarket devices.
		Physical interface performance requirements, circuit
		identification and configuration, and electrical
		requirements for the physical layer of the ITS data bus.
SAE J2369	Standard for ATIS	A general framework allowing transmission of traveler
	Message Sets Delivered	information via bandwidth reduced media such as found
	over Reduced Bandwidth	in wireless applications. Creates a uniform coding and
	Media	message structure for link travel times, incident text,
		weather, and transit for broadcast delivery.
SAE J2395	ITS In-Vehicle Message	Specifies orderly temporal and spatial presentation of
	Priority	11S information to the driver.
SAE J2400	Human Factors in Forward	Minimum safety and human factor requirements for
	Collision Warning System:	tront collision warning (FCW) operating characteristics
	Operation Characteristics	and driver interfaces to ensure consistency across
	and User Interface	vehicles so that drivers can quickly understand and safely
	Kequirements	use a FCW-equipped vehicle.

Hin .

Appendix L

Summary Descriptions of NTCIP Protocols

NTCIP		
Number	Туре	Title
1101	Base Standard	Simple Transportation Management Framework (STMF)
1102	Base Standard	NTCIP Octet Encoding Rules (OER)
1103	Base Standard	NTCIP Transportation Management Protocol (TMP)
1104	Base Standard	C2C Naming Convention Specification
1105	Base Standard	NTCIP CORBA Security Service Specification
1106	Base Standard	NTCIP CORBA Near Real Time Data Service Specification
1201	Device Data Dictionary	NTCIP Global Object (GO) Definitions
1202	Device Data Dictionary	NTCIP Object Definitions for ASC
1203	Device Data Dictionary	Object Definitions for Dynamic Message Signs (DMS)
1204	Device Data Dictionary	NTCIP Environmental Sensor Station Interface Standard
1205	Device Data Dictionary	NTCIP Objects for CCTV Camera Control
1206	Device Data Dictionary	NTCIP Object Definitions for Data Collection
1207	Device Data Dictionary	NTCIP Object Definitions for Ramp Meter Control (RMC)
1208	Device Data Dictionary	NTCIP Object Definitions for Video Switches
1209	Device Data Dictionary	Object Definitions for Transportation Sensor Systems (TSS)
1210	Device Data Dictionary	NTCIP Objects for Signal System Masters
1211	Device Data Dictionary	NTCIP Objects for SCP
1212	Device Data Dictionary	NTCIP Objects for Network Camera Operation
1213	Device Data Dictionary	NTCIP Objects for ELMS
1301	Message Set	Weather Report Message Set for ESS
1400	Device Data Dictionaries	Transit Communications Interface Profiles
1601	Interface Definition	CORBA Base Object Model for TMS
1602	Interface Definition	Generic Reference Model (GRM) for Traffic Management
1603	Interface Definition	CORBA-Specific Reference Model (CSRM) for Traffic
2001	Comm. Class Profile	NTCIP Class B Profile
2002	Comm Class Profile	NTCIP Class A and Class C Profiles
2101	Subnetwork Profile	NTCIP SP-PMPP/R\$232
2102	Subnetwork Profile	NTCIP SP-PMPP/ESK
2102	Subnetwork Profile	NTCIP SP-PPP/RS232
2104	Subnetwork Profile	NTCIP SP-Ethernet
2201	Transport Profile	NTCIP TP-Transportation Transport Profile
22.02	Transport Profile	NTCIP TP-Internet (TCP/IP and UDP/IP)
2301	Application Profile	NTCIP AP-STMF
2302	Application Profile	NTCIP AP-TFTP
2303	Application Profile	NTCIP AP-FTP
2304	Application Profile	NTCIP AP-DATEX-ASN
2305	Application Profile	NTCIP AP-CORBA
-307	- TP	

NTCIP

Number	Туре	Title
2306	Application Profile	Application Profile for XML in ITS Center-to-Center
2500	Application Tionic	Communications (AP-C2CXML)
2500	Center Information Profile	NTCIP InP-C2C
2501	Center Information Profile	NTCIP InP-DATEX
2502	Center Information Profile	NTCIP InP-CORBA
2801	System Information for	Systems Engineering Information for NTCIP Communications
2001	Profiles	Profiles
7001	Registry	NTCIP Assigned Numbers (NAN) - Part 1
7002	Registry	NTCIP Assigned Numbers (NAN) - Part 2
	Process, Control, and	
8001	Information Management	NTCIP Standards Development Process
	Policy	
	Process, Control, and	
8002	Information Management	NTCIP Standards Publications Format
	Policy	
	Process, Control, and	
8003	Information Management	NTCIP Profile Framework
	Policy	
	Process, Control, and	
8004	Information Management	NTCIP Structure & Identification of Management Info (SMI)
	Policy	
	Process, Control, and	
8005	Information Management	Procedures for Creating MIB Files and a FADD
	Policy	
	Process, Control, and	
8006	Information Management	NTCIP Administrative Policy and Procedure
	Policy	
	Process, Control, and	
8007	Information Management	Testing and CA Documentation within NTCIP Standards
	Policy	

Appendix M

Center-To-Center (C2C) Communications Survey
I-10 Corridor Traffic Management Centers (TMCs)

CENTER-TO-CENT	TER (C2C) COMMUNI	ICATIONS SURVEY
Please fill out a	nd return by August 10. 2007	(address at end)
Center Name & Location	2 8 /	
Person Completing Survey Phone No		
e-mail		
1. Are you today actively con	municating with other TMCs	s?
a. Please indicate type of	of communications (check all	that apply):
Voice	Active	Planned
Data	Active	Planned
Video	Active	Planned
c. Do you have an Inter Yes d. What communication	face Control Document ? No 1s protocol standards have yo	u adopted for this:
DATEX	Active	Planned
CORBA	Active	Planned
XML	Active	Planned
Not standardized,	custom interfaces - please br	iefly describe:

ATERSTATE DE	ATIONAL REIGHT ORRIDOR		MERGING RAFFIC AHEAD	
	e. What specific NTCIP Star list): 2304 AP-DATEX-ASN 2306 Application Profile for C2C XML Other Other f. Please briefly describe any implementation, or cite/prov	Idards are you using (Active Active Active Active y pitfalls encountered/ ride pertinent docume	see <u>www.ntcip.org</u> for detailed Planned Planned Planned Planned Planned	
	g. How have you dealt with locations, etc., to be understa Currently using or a P for Pl With lat-longs With state plane coord With centerline milepo With cross streets Other:	location referencing t andable across softwa anning to use): inate systems	o allow devices/event re systems? (mark a C for	
	h. Between TMCs, please in Currently doing or a P for Pl Share traveler informat Allow posting of inform Share device status info Allow other agency to describe the command-and-co	dicate if you (mark al lanning to do): tion mation to another TM formation control your devices, control structure for th	l that apply - mark a C for C traveler information system to some degree; please briefly is:	
	AppendixM-C2CSurvey	2/5		

ER CO	RRIDOR			. Ar
			60 //I	
		omments of further clarification	on of Q #1:	
2.	What types of physical commo devices?	unications do you use betwee	n your TMC and field	
	Copper Wire	Active	Planned	
	Wireless at MHz	Active	Planned	
	Wireless at GHz	Active	Planned	
	Other	Active	Planned	
	a. Is this ?			
	Agency-Owned	Shared with Other Agency or Private Entity	Leased	
4	mendixM-C2CSurvey	3/5		

COF	IGHT RIDOR			
				1
3.	. What types of physical communi- TMCs?	cations do you use between y	your TMC and other	
	Fiber Optic Cable	Active	Planned	
	Copper Wire	Active	Planned	
	Wireless at MHz	Active	Planned	
	Wireless at GHz	Active	Planned	
	Cellular	Active	Planned	
	Other	Active	Planned	
	a. Is this ?			
	Agency-Owned	Shared with Other	Leased	
	further clarifications to Q $\#2$:	MC(s) with which you comm and #3:	nunicate and add any	
_	further clarifications to $Q \# 2$	MC(s) with which you comm and #3:	nunicate and add any	
	further clarifications to Q #2	MC(s) with which you comm and #3:	nunicate and add any	
	further clarifications to Q #2	MC(s) with which you comm and #3:	nunicate and add any	
	further clarifications to Q #2 :	MC(s) with which you comm and #3:	nunicate and add any	
	What types of connections might	MC(s) with which you comm and #3:	ate communications?	
 4.	What types of connections might	MC(s) with which you comm and #3: you have for future interst	ate communications?	
 4.	. What types of connections might Fiber Optic Cable Wireless atMHz	MC(s) with which you comm and #3: you have for future interst : Active	ate communications?	
 4.	What types of connections might Fiber Optic Cable Wireless at MHz GHz	MC(s) with which you comm and #3: you have for future interst Active Active	ate communications? Planned Planned Planned Planned Planned	
 4.	What types of connections might Fiber Optic Cable Wireless at MHz Leased Line	MC(s) with which you comm and #3: you have for future interst Active	ate communications? Planned Planned Planned Planned Planned Planned	
 4.	What types of connections might Fiber Optic Cable Wireless at MHz Leased Line Internet	MC(s) with which you comm and #3: 	ate communications? Planned Planned Planned Planned Planned Planned Planned Planned Planned	
 4.	What types of connections might Fiber Optic Cable MHz Kireless at MHz Leased Line Internet Other	MC(s) with which you comm and #3: you have for future interst : Active Active Active Active Active	ate communications? Planned	
	b. Flease identity the other 11 further clarifications to Q #2 : . What types of connections might Fiber Optic Cable Wireless at MHz Wireless at GHz Leased Line Internet Other Yes no	MC(s) with which you comm and #3: 	ate communications? Planned Planned Planned Planned Planned Planned Planned Planned References (e.g.,	

FREIGHT CORRIDOR	RAFF AHER AHER		H
a. If yes, plea agreements	se describe your arrangement (e.g., type of physical system, , maintenance, cost sharing, etc.)		
6. Do you have arrangem communications pro yesno a. If yes, plea shared RO	ents for the use of communications infrastructure of private viders? se describe your arrangement (e.g., type of physical system, W use, agreements, maintenance, cost sharing, etc.)	-	
Please add any needed o	clarifications to Q #4 through #6:	- - -	
7. Please describe how m privately contracted, in	aintenance for your communications system is managed (e.g., aternal, maintenance agreement with other agencies, etc.)	- - -	
Thanks!		_	
Please mail to:	Jim Powell Wilbur Smith Associates 801 Warrenville Road, #260 Lisle, IL 60532		
Or scan/e-mail to:	jlpowell@wilbursmith.com		
Or fax to:	630-434-8163 (attn Jim Powell)		
AppendixM-C2CSurvey	5/5		

Advanced Traveler Information Systems

WHITE PAPER

For the I-10 National Freight Corridor June 2007

I. PURPOSE

This white paper provides background information on Advanced Traveler Information Systems (ATIS) user services and the possibilities that it can offer to the corridor from the public sector perspective. It is intended to support the I-10 Freight Corridor Technical Advisory Committee (TAC) in its decisions regarding development of the corridor ITS architecture and identification of potential projects for the initial corridor program. Toward this end, it provides background material on ATIS and a discussion of related issues in the I-10 Corridor. It also discusses the anticipated benefits of deploying ATIS, along with potential challenges that may be encountered in the process of deployment.

This paper focuses on the ATIS efforts of public sector entities. In addition to these efforts, many regions and various private entities are aggressively pursuing and supporting private sector data collection and information distribution efforts. The challenges of private sector initiatives will not be addressed in this paper, although integration between the public and private sector information providers is expected to increase.

II. ATIS BACKGROUND

ATIS provides information to travelers, including commercial vehicle (CV) operators, concerning the travel environment and traffic conditions. Information provided is intended to reduce traveler uncertainty and support travelers and operators in their itinerary and scheduling decisions. ATIS does not include advertising or "yellow pages" services, although those functions are often provided along with other traffic demand or management information.

A. Types of information

Traveler information generally falls into one of two basic types: pre-trip and en-route. Pre-trip information is available to travelers before they begin their trip, and can be accessed via phone, computer, radio, or other means. En-route information can be accessed by the traveler during the trip. Examples of en-route include radio broadcasts, dynamic message signs, cell phones, etc.

There are several types of information that can be useful to the traveling public, including congestion information, incident/event information, travel time, and weather. Caltrans reports that weather, lane closures, and congestion are the most frequently demanded forms of traveler information. Users of this information include CV operators in the I-10 Corridor. While many CV operators are familiar with the roadway network and traffic patterns, at any given time a significant number of drivers on the road are unfamiliar with the area. Material presented in this white paper will address information for both familiar and unfamiliar or visiting operators.

Congestion information tells highway users which sections of their route are experiencing delays. This type of information is particularly useful to CV operators and other time-sensitive users. From a commercial vehicle operations (CVO) perspective, most congestion information is received while en-

route. With accurate congestion information available to them, CV operators who are familiar with an area's road network are better able to choose an alternate route or adjust their travel times to avoid the congestion. When congestion is unavoidable, communicating accurate and timely information regarding its severity, extent, and anticipated duration can reduce operator uncertainty and help drivers evaluate potential alternative routes. The availability of congestion information has been shown to help reduce secondary accidents related to nonrecurring congestion.

Incident/event information provides travelers with information regarding traffic incidents and disruptions along the intended route. The types of events may include both planned and unplanned events. Planned or anticipated events include special events (e.g., parades) and road work. Unplanned events (incidents) may include accidents or emergency repairs. CV operators may obtain this type of information before the trip begins or while underway, and CVO dispatch centers may collect this information and share it with affected drivers. If the operator or dispatcher is familiar with the local roadway network, he or she may then be able to select an alternate route, or reschedule stops to minimize delays. As with congestion information, having access to accurate incident or event information will aid in reducing driver uncertainty regarding the delay.

Travel time information provides estimates of the time needed to travel a particular segment of a corridor. Travel time information is typically conveyed while en-route, and may take several forms. One type of travel time information conveys the estimated time it will take a driver along a certain route to reach a

landmark. Travel time information may also indicate how long it will take a motorist to traverse a congested area on a particular route. Travel time information is more useful when it is accompanied by recommended alternate routes and estimated travel times for the alternates.

Weather information is similar to incident information in that it can include anticipated events, such as hurricanes, or unanticipated events, such as flash floods. The impact of weather events can vary in its spatial extent, ranging from highly localized to spanning several states. The usefulness of weather information can likewise vary. Short duration events of extreme intensity are likely to be of interest only within a limited range, but more intense events may be of broader interest. As with travel time information, the utility of weather information can be increased by providing it in conjunction with other forms of ATIS information, such as recommended alternate routes and anticipated travel times for alternates.

B. Implementation

Operationally, implementation of traveler information projects can range from relatively simple to extremely complex. Some implementations may be as simple as a web site that incorporates third-party data and information services. For example, information on lane closures on freeways is typically known in advance (planned) and updated daily; therefore, as long as the right person is contacted, it can be easy to obtain or transmit the information. On the more complex end of the scale, developing and conveying real time congestion information can require a large-scale deployment of equipment, systems, and personnel. Real time incident information is generally dependent

on integration with emergency management dispatch systems. In these cases, the information that results can be very simple while the back-end systems needed to collect, process, and distribute the information require significant resources to build and maintain. As with many ITS projects, the institutional barriers to implementation can pose a far greater challenge to implementation than the technical issues.

III. CATEGORIES OF COMMERCIAL VEHICLE ATIS USER SERVICES

The National ITS Architecture includes a number of general categories of ATIS. The following categories are generally applicable to commercial vehicle users:

- 1. Broadcast and Interactive Traveler Information
- 2. Autonomous and Dynamic Route Guidance
- 3. In-Vehicle Signing
- 4. Traffic Control Centers
- 5. Information Delivery Systems

Broadcast and Interactive Traveler Information services convey information to travelers, both in advance of and during the trip. Broadcasted traveler information services are best known in the form of radio traffic reports. Interactive traveler information services are largely web-based or subscription-based.

Autonomous and Dynamic Route Guidance services provide the traveler with real time means of planning a route or modifying a route during a trip. Autonomous route guidance services are selfsupporting and require no connection to a central server, thereby allowing a traveler to identify his or her current position using on-board equipment and databases. Dynamic route guidance systems employ a real time connection to a central server, allowing route guidance systems to respond to current traffic and weather conditions.

In-Vehicle Signing provides for transmission of traffic and travel information, such as weather, construction, or traffic congestion information, to drivers via devices inside the vehicle. In-vehicle signing infrastructure includes the entire communications network needed to support this system, up to and including wireless connections to the vehicle. In-vehicle signing refers both to current commercial vehicle applications use among large trucking operations, as well as future information transmission from various government agencies, toll facility operators, and others.

Traffic Control Centers are typically associated with large metropolitan areas or statewide highway networks. Communication of information may be but one of many responsibilities of these centers and the actual responsibilities of each center may vary considerably from state to state and from one metro area to another.

Information Delivery Systems include all the various multifunction and dedicated technologies that may be used to convey information to travelers. Multifunction systems include public and private traffic web sites, local radio and television broadcasters, and subscription broadcast outlets such as satellite radio providers. Dedicated systems include systems designed specifically for traffic and traveler information, such as 511 systems, and private sector mayday/concierge service such as OnStar[™].

IV. POTENTIAL ATIS APPLICATIONS AND BENEFITS

This section identifies some potential long-term ATIS commercial vehicle projects for the corridor and discusses how they may be accomplished.

A. Interregional information sharing and systems coordination efforts

These projects are intended to facilitate and streamline information sharing efforts between various entities along the corridor.

1. Integrated ATIS databases and data dictionaries

This future project requires a corridorwide agreement on the sharing of elements in the various ATIS databases. Sharing of the data/information within the databases allows state-by-state autonomy of every database along the corridor while allowing motorists seemingly uninterrupted access to corridorwide travel information. This will work best when data collection is more mature, the states along the corridor collect and disseminate similar types of travel information, and travel information is collected and shared for the primary and alternate routes.

For the CV operator, having access to corridorwide information can be of great value for increasing the efficiency of long-distance travel. When reliable travel information is shared throughout the network, drivers can make better informed routing choices and reduce or better use their travel time. Accidents involving commercial vehicles can also be reduced when informed operators are able to avoid or plan around congested areas, incidents, and inclement weather. Drivers and trucking companies also have a strong interest in minimizing truck idle time and increasing the reliability of planned travel times. Having accurate travel time information available enables operators and operating companies to more accurately plan routes without needing to build in large amounts of delay recovery time.

Interagency coordination across the corridor regarding data standards and formats is critical to the successful implementation of information sharing and system coordination. Where data systems are standardized in their elements and structure, the time and cost required to integrate them is minimized. Successful integration of corridor data does not require that all state and local entities agree on one common data standard for all. However, it does require identifying a standard for transmitting between entities that is consistent with federal standards and best systems engineering practices.

2. "No Boundaries" ATIS information across each state line

As an interim toward integration of ATIS databases along the corridor, this project aims at integration of ATIS databases by multistate region. The motorist will benefit from consistent traveler information available in segments of the corridor. The benefits of this deployment will be similar to the fully integrated ATIS database project, but on a smaller scale for longdistance motorists.

3. Agreement on travel information to be disseminated

As travel time information becomes more prevalent in the nation, more and more states will disseminate this information as part of the ATIS offerings. When this information is offered along a cross-country corridor, long-distance drivers may reasonably expect that the

information is presented in a similar format along the length of the corridor and is consistent in its quality and accuracy. As with other travel time projects, this one will be enhanced as travel times are available for the primary and alternate routes. However, most users will not be traveling the full length of the corridor, and will have greater use for more localized information.

Benefits of consistent travel information along the corridor include a reduction of driver confusion and uncertainty. Travel time and other information along the primary route can aid in reducing driver frustration, but only insofar as complementary information is available and accurate. For example, long-distance travelers may find little use for travel time information that includes only the main route and does not provide information regarding alternate routes. Without that information, drivers are unable to accurately evaluate the alternate routes.

4. Integrated 511/DMS information systems for drivers and CVO dispatch

This future project is closely tied to the ATIS database integration project. In this project, the states would determine whether to deploy one corridor web site that contains all corridor information, or to have each state provide corridor information on their existing web sites. It is also possible for states to do both, as long as the information on all sites is internally consistent and does not result in different information outlets telling different stories.

Web-based dissemination systems as currently deployed are typically oriented toward CVO dispatchers, other systemwide dispatchers, and drivers for pre-trip consultation. However, future web-based applications are likely to be more oriented toward en-route use, using data on on-board applications and devices. This will make that information available to the driver while the trip is in progress, and permit the driver to make real time use of real time information.

For these systems to be useful, they will need to address some of the problems of predicting travel time for trips of more than a few hours. With current methods, travel time predictions tend to be very accurate for short-distance and short-duration trips, but that accuracy diminishes as trip time and distance are scaled up to long-distance, multiday trips.

B. Public/private efforts to inform freight community

These projects include both public sector and private sector initiatives to make information more accessible and useful to drivers, operations staff, and other CVO stakeholders.

1. "Push" ATIS with corridor-specific information

As operational deployments are maturing, private sector entrepreneurs may offer subscription-based "push" ATIS for specific segments of the corridor. These systems will contact opt-in subscribers via preferred communication options during registered travel times.

To date, these types of systems have not proven commercially viable. In order for these systems to become widely used, the private sector will need to become more involved in the collection, cleaning, and quality assurance of travel data. At present, the public sector is the principle source for most of this type of data; however, public sector entities typically do not have the resources to monitor data quality. As the private sector becomes more involved in collecting,

packaging, and distributing traffic data, this type of information is expected to become more robust, refined, and reliable.

2. Integrated ATIS and navigation systems (to supplement alternate route information)

This future project involves integration among public sector programs with private sector programs. Integration of real time travel information with navigation systems will increase the value of information provided. This system is envisioned to be more useful for CVO and other fleet operators who have the aid of dispatchers, motorists who have passengers in the car, and solo drivers who momentarily stop driving to access this level of detailed information. This private sector deployment is currently available on a very limited basis and currently does not contain the robust data supply necessary for high accuracy and reliability. The current navigation system maps out a selected route and then recalculates the desired route when the driver maneuvers off the original route. When integrated with real time data, the driver will be offered more than one route based on current traffic conditions. When the driver selects an alternate route, the navigation portion of the system recalculates the new primary route and alternate routes based on current conditions. When reliable and accurate, these integrated systems will greatly reduce driver frustrations and optimize trip and fuel efficiency. This, in turn, will help to ensure on-time deliveries, which reduces costs to shippers.

V. POTENTIAL DEPLOYMENT OBSTACLES

This section highlights some of the difficulties in developing and deploying ATIS systems, including

both institutional and technical obstacles. In deployment of new information technologies, institutional issues can often prove more difficult to address than technical issues. However, technical issues remain, with reductions in the cost of equipment often offset by increases in the costs of labor and associated technical services.

A. Institutional obstacles

Perhaps the greatest obstacle to integrating the identified traveler information is that the groups that are primarily responsible for various pieces of information typically do not work in ITS operations. For example, daily lane closure and construction information typically comes from construction, traffic, and public information bureaus at various agencies. Obstacles may arise as different agencies have different needs for accuracy and compatibility of data, and may communicate data in ways that are contradictory or insufficiently complete for operations needs. Weather and special event information often comes from groups that are not directly related to transportation agencies, and transportation may not be the focus of those entities' dissemination efforts. Private sector shippers and carriers may have concerns regarding sharing proprietary information, and may encounter internal conflicts between making information available to customers who may value it versus making it available to competitors.

To ensure that integration efforts are effectively and equitably shared, these issues are best approached during the institutional discussions among the corridor agencies. One approach would be to hire a single consultant team for the entire corridor and equitably split the cost of the integrations among the affected

agencies based on an agreed-upon formula. Another is for each state to be responsible for all interfaces within that state, while bordering states may consider sharing the costs of cross-state integration.

Whichever approach is taken, the corridorwide approach may be documented in a memorandum of understanding (MOU) among the states and agencies. The MOU will address which state is responsible for the necessary efforts needed to deploy a system. The process leading up to signing of the MOU typically encourages states to consider how to address potential disagreements before they develop. Participating agencies should be encouraged to web-publish their traveler information data via accepted national standards (e.g., SAE J2354 XML for ATIS message set and location referencing) over publicly accessible Internet feeds for other agencies and commercial/media access. This approach allows the source agency to report only the information it wants to distribute, and, as a one-way distribution, it enables the agency to look after its own computer systems security. It further allows any neighboring ATIS or private sector navigation or traffic reporting company equal access to the source data.

1. Example: Sharing data within a state

A recent example of an ITS system deployment within one state took nearly a decade to progress from final acceptance testing to full system deployment. This provides an extreme example of the difficulty of resolving institutional conflicts. The technology of the system was available for deployment a full 10 years before the institutional issues allowed the system to reach its full operational deployment. In this example, the agencies were both in the same state, but one of the agency databases contained personal information, which constrained that agency's ability to share the information.

2. Example: GIS data sharing between agencies

Another institutional effort that attempted to bridge jurisdictional and agency boundaries involved agreement regarding location information. Geographic coordinates can serve as a ready standard for communicating location information, but may be of limited use to agencies that do not have fully developed geographic information system (GIS) capabilities. Even where systems are in place, different data standards may make it difficult to transmit location information among different agencies. As a result, geographically referenced data systems have not proven to be a reliable means of relaying information outside of agency boundaries.

B. Technical obstacles

Technical obstacles include those where the limitation is technical in nature. These include obstacles where technology is unavailable for a given cost, or for any cost, as well as those where the obstacle may be surmounted with an appropriate deployment of technical resources. Managing and scaling ever larger sensor networks provides an example of a technical obstacle. Data and database systems designed and implemented on a local scale can work as intended as a single system, but problems may result as localized sensor data is aggregated into and merged with other localized data to provide information on network performance.

Data accuracy and availability are representative technical obstacles. Lane closures necessary for

construction or special events provide one example. Much of this information is typically kept in nonelectronic form and often not integrated into traffic management centers (TMCs). Additionally, information on daily closures may not always be accurate or up to date, leading to closures at very late notice or no notice to the TMC. Other closures may go beyond their allotted time frame. For systems to gain users' trust, it will be necessary to develop and implement measures and goals for accuracy of data and information.

Once institutional issues have been addressed, each system in the corridor will need to address the necessary data input reliability goals and tolerances. Many systems will retain a certain level of manual data input, such as for special and pre-planned events that impact travel. Some degree of integration among the various agencies within each of the states to populate the databases will be necessary.

This is especially true with private sector data supplementation. Data integration of transportation provider data with emergency service provider data provides one illustrative example. Anecdotal information suggests that emergency management databases contain approximately 10 percent of information that may be useful to transportation service providers – while nearly 100 percent of the information in the transportation databases is useful to emergency service providers. Appropriate assurances and reliability testing addressing database security, especially regarding emergency and law enforcement databases, will be increasingly necessary as more agencies integrate their systems.

C. Other obstacles

Intellectual property rights bring a new complexity to sharing and distributing traveler information. This complexity is compounded as the number of agencies and states sharing data increases and private sector concerns are introduced. Establishing a fair and equitable means of sharing data and information with private sector information providers will require agreement from state and county/local agencies, vendors, and private sector providers. If each agency maintains data and information from within their own state's/agency's database, then agreement on intellectual property rights may not be necessary. An agreement could be reached that no agency is allowed to distribute or sell data or information from another state's or agency's data or information. Adjoining states will need to reach an agreement on how to best manage dissemination of data and information. Organizations seeking to access travel data and information may find it cumbersome to contact multiple agencies to obtain information that can currently be found on one database.

These conflicts can be resolved, but resolution may require a legal agreement, MOU, or intergovernmental agreement to establish and clarify ground rules regarding technical, funding, management, and information sharing. Because it can take months or years to develop and execute these agreements, it is preferable to begin the process as soon as possible, well in advance of anticipated deployments.

Emergency Management

WHITE PAPER

For the I-10 National Freight Corridor June 2007

I. PURPOSE

This white paper provides background information on emergency management user services, and is intended to support the Technical Advisory Committee (TAC) in its decisions regarding the ITS architecture and the initial program. Toward this end, this paper provides a definition of emergency management along with a discussion of the potential benefits and barriers to deploying ITS technologies to support emergency management functions.

II. DEFINITION

Emergency management includes the incident management, disaster response and evacuation, security monitoring, and related applications that deal with disasters and disruptions affecting traffic operations. Emergencies can range from relatively minor events such as hazardous material (HAZMAT) leaks and power outages to major events such as hurricanes and national security incidents.

The key concept of emergency management is to provide for a coordinated, multiagency response, with transportation typically in a supportive role. As an example, a freeway traffic management center may be an ideal location for command and control, as it often connects to basic monitoring and control equipment such as detectors, closed-circuit television (CCTV) cameras, dynamic message signs, and highway advisory radio. Co-located traffic management and police/fire dispatch centers can greatly enhance management effectiveness. Emergency management thus covers public safety, traffic management, and other agency systems operating in unison.

Management activities include those activities associated with fixed and mobile public safety communications centers, such as public safety call taker and dispatch centers operated by police, fire, and emergency medical services. Emergency operations centers activated at local, regional, state, and federal levels fall in its purview, as well as portable systems that support the Incident Command System¹, such as mobile communications centers. Emergency management also relates to towing and recovery, freeway service patrols, HAZMAT response teams, and "mayday" service providers.

Emergency management systems monitor alerts, advisories, and other threat information. This involves developing, storing, using, and refining emergency response plans that are the core of coordinated, multiagency action. As the emergency progresses, situational information on damage assessments, response status, evacuation information, and resource information are shared to keep all allied agencies apprised of the response. Interface with transit agencies, for example, may call for coordinated use of transit vehicles to support evacuation efforts. Emergency management is also the focal point for providing emergency and evacuation information to the traveling public, including wide-area alerts when immediate public notification is warranted.

¹ For a broad perspective on the *Incident Command System*, see <u>http://www.osha.gov/SLTC/etools/ics/index.html</u>. For a transportation perspective, see *Simplified Guide to the Incident Command System for Transportation Professionals*, Federal Highway Administration Report No. FHWA-HOP-06-004, February 2006.

Ideally, emergency management tracks and manages emergency vehicle fleets using real time road network status and routing information. In this way, emergency vehicles can be assigned to the best available route for the timeliest response. Operations staff from traffic management centers (TMCs) can tailor traffic control and signal displays to support emergency vehicle ingress and egress, implement special traffic restrictions and closures, activate evacuation traffic control plans, and perform other tasks as needed to meet the unique demands of an emergency.

Another aspect is sensor and surveillance equipment to enhance transportation security of both the roadway infrastructure (e.g., bridges, tunnels, and interchanges) and the public transportation system (e.g., transit vehicles, rail, bridges, tunnels, yards, and public areas such as stops and stations). Emergency management handles sensitive information, must "operate through" and be available in distressed environments, and is subject to numerous threats, including both physical and cyber attacks. The reach of activity also covers private sector telematics (wireless automobile) service providers, service patrol dispatch systems, and security monitoring systems. Freight operations, potentially involving railroads, track, and yards, may be included. The operating environment thus ranges from tightly controlled, secure command centers to open field environments where command posts are established near a major incident. Throughout emergency management practice, sensitive information must be protected by appropriate security safeguards.

III. EXISTING EFFORTS

The National ITS Architecture includes three general areas of emergency management user services: Emergency Notification and Personal Security, Emergency Vehicle Management, and Disaster Response and Evacuation. Existing emergency management infrastructure includes facilities and capabilities that can facilitate one or more of these capabilities:

Emergency Notification and Personal Security: The National Architecture defines this service as providing for travelers to communicate any emergency or nonemergency need for assistance to appropriate emergency response personnel. These services can include one-way or two-way communication. For example, in communications from a vehicle, the vehicle may notify emergency services about a collision. In communications from a center to a vehicle, a vehicle may be notified of emergencies ahead that may cause a delay or warrant a reroute.

Emergency Vehicle Management: This user service minimizes the response time of emergency vehicles to incidents. The service includes improvement of communications between response vehicles and dispatch centers, improved real time communication of emergency vehicle location, and automated dispatch support.

Disaster Response and Evacuation: This service works to improve transportation system performance during natural and manmade disasters. Aspects of the service include improved response time for first responders and streamlined evacuation systems and procedures.

A. Categories of existing efforts

Existing efforts and facilities can generally be grouped into the following categories:

911 Emergency Call and Dispatch Centers: Various counties and municipalities in the corridor maintain 911 call systems to handle routine emergency calls. These centers may also be used for disaster or large-scale emergency call intake.

State DOT Emergency Operations Centers: These emergency operation centers are typically staffed only during emergencies by representatives of responding agencies. They may be operated out of a state central office or district office.

State Emergency Management Agency Operation

Centers: These centers receive and relay information relating to natural disasters such as hurricanes, floods, and earthquakes. They may also be used for more routine responses to inclement weather or other situations requiring coordinated responses from multiple agencies.

County Emergency Operations Centers: These centers are similar in function to state emergency operations centers. County EOCs may be staffed during large-scale emergencies as well as during smaller-scale weather or other situations requiring a coordinated response.

State Police Dispatch Centers: These centers process and coordinate incident response efforts. They may be specifically oriented toward the highway network or encompass broader responsibilities.

County/Local/Regional Fire Dispatch Centers:

These centers provide emergency notification to agency response personnel and coordinate responses to large-scale fire and other emergencies.

Bridge/Tunnel/Toll Route Control Dispatch Systems: These facility-specific incident response centers detect incidents and dispatch response vehicles, as needed.

County/Local/Regional Police Dispatch Centers:

These centers coordinate emergency notification and dispatch, as well as other efforts at the county, regional, or local level.

IV. POTENTIAL LONG-TERM APPLICATIONS AND BENEFITS

This section identifies some potential longer-term projects for the corridor and discusses how they may be accomplished.

Certain types of recurring weather and geologic events along the I-10 Corridor figure strongly in the emergency management user service. Examples include hurricanes along the Gulf Coast, dust storms and flash floods throughout the Southwest, and earthquakes in Southern California. Security events can also fall into this category, although security is covered in a separate white paper. The common factor in these events is their large-scale and random timing.

One purpose of the I-10 Corridor is to address multistate coordination in emergency situations. All states in the corridor have an emergency management agency, and all counties are generally required to have an emergency management plan. The plans should be tailored for the needs of the individual county. They may include evacuation plans for nuclear power stations, military bases, or other localized needs. Coordination of almost all plans begins at the county level, and reaches to the state and federal levels.

The following preliminary projects are intended to support these efforts of the emergency management user service. Each includes a brief description of the project's intent, suggestions on how to implement the

project, and a discussion of the project's benefits and applications.

A. Resource sharing between agencies

This future project would require a corridorwide agreement on the sharing of elements in the various emergency management data systems. If properly implemented, each state would be able to share data and information with other states, enabling states to incorporate information from other states in their operations while retaining control over their own systems.

Agency-to-agency information sharing will work best when data collection is more mature, the states along the corridor collect and disseminate similar types of emergency management information, and when emergency management information is collected and shared for the entire region (rather than just on specific routes).

For the commercial vehicle operations (CVO) organization, this type of corridorwide information can be very valuable for safe and efficient long-distance travel. This project does not necessarily involve sharing of integrated information with anyone other than agencies; however, when agencies share information to better fulfill their operational duties, all motorists will benefit. Incident management and clearance times will be reduced, overall traffic volumes will be minimized during noted emergency situations when there is prior knowledge, and safety (as evidenced by reduced secondary accidents) will be increased. For the motorists, overall travel time is also likely to be reduced. One important step toward this end is for agencies along the corridor to agree on the data to be used within the databases. The more each database has in common in terms of elements and structure, the easier (i.e., less time and less cost) it will be to integrate the systems together. It is not necessary that all states agree on one common data set for this deployment to be successful, just more economical and more in line with the federal standards and the systems engineering approach.

During emergencies with advanced warning, it has come to the nation's attention over the past few years how information regarding a wide variety of fleet inventory and shelter information would have been helpful to the affected emergency warning areas. While this type of information is not necessary from a day-today operations standpoint, the channels/interfaces should be in place to be used during emergencies.

B. Information sharing within the corridor

This project aims at dissemination of emergency management information on a corridorwide basis. The motorist will benefit from the multistate availability of emergency management information available along the corridor. Dissemination of the data/information within the databases allows state-by-state autonomy of every database along the corridor and also allows motorists seemingly uninterrupted access to corridorwide emergency management information. As the information is shared by agencies, the typical ITS tools may be used to inform motorists. This includes dynamic message signing (DMS), highway advisory radio (HAR), and 511. All systems should be able to receive emergency information and know what to do

with it. This may require the hardening of some communications and critical system components.

The benefits of this deployment will be similar to the benefits realized by emergency management deployments. For the motorists, overall travel time is likely to be reduced when reliable emergency management information is shared throughout the road network supporting the corridor so the drivers can make educated choices. Delays and accidents involving CVO vehicles will be reduced if informed operators avoid congested areas and areas where incidents, emergencies, and inclement weather are detected.

C. Coordinated communication in evacuation efforts

Evacuation efforts would be implemented on a regional basis for those emergencies with advanced warning where evacuation is ordered. Besides shared information, recommended operational improvements would include coordinated communication channels and site-specific detection and automated technologies. The purposes of these projects would be to improve communications within the transportation agencies and with other responding agencies, and to avoid operations staff and emergency responders needing to communicate across agency boundaries and being unable to do so.

During emergencies with advanced warning, information regarding a wide variety of fleet inventory and shelter information would be helpful to the affected emergency warning areas. While this type of information is not necessary for day-to-day operations, the channels, protocols, and interfaces would be in place and ready to be used during emergencies. This would represent an expanded role for a TMC or Advanced Traveler Information Systems (ATIS) system, as they would be used for both day-to-day traffic information and emergency situations, and would have immediate access to information and procedures needed in the event of an emergency.

Some of the site-specific deployments that would enhance evacuation efforts include HAR, automated gate systems to allow effective and safe evacuation routes away from the affected areas (in-bound travel can be accommodated on alternate, nonemergency evacuation routes), and effective ATIS elements to advise motorists of conditions. When planning these systems, consideration should be given to ensure full functionality in actual emergencies. For example, traffic sensors may need to work with vehicles moving in either direction on a section of road, and DMS equipment would need to be positioned so as to be visible to contra-flowing traffic.

D. Enhanced resources for managing emergencies

As previously noted, there have been many recent examples of emergency responders at emergency situations without the ability to communicate across agencies. Dispatchers are required to enter information into every agency's system and to relay information. So many communication challenges, such as high levels of manual entry and manual communication reliance, frequently appear on post-situation "room for improvement" lists. It is extremely important for the states and agencies along the I-10 Corridor to establish an emergency communication channel dedicated to evacuation and emergency activities.

V. POTENTIAL DEPLOYMENT OBSTACLES

For many emergencies, the primary focus will remain on the emergency responders. However, effective functioning of the transportation system can be critical to getting resources to and from an emergency, as well as in evacuating civilians. The Federal Highway Administration (FHWA) has recently published the results of their nationwide workshops on best practices for Emergency Transportation Operations, and underscored this role in a recent publication (FHWA-HOP-07-076).

Potentially, the most significant institutional issue is ensuring that emergency responders increase their coordination with the transportation agencies. The concern is that while the desire to better coordinate exists from the transportation perspective, it is often not viewed as a high priority from the emergency responder perspective.

Many of the technical aspects of this are focused on seamlessness. The last thing emergency responders want to do is to be forced to do additional work while in the middle of addressing an emergency. Ideally, ITS projects will foster coordination and information sharing without requiring responders to do anything different or unusual.

This section highlights needed actions and potential problems to share information or achieve necessary coordination.

A. Agency-specific practices inconsistent with TMC policies

Each system described, once the institutional issues have been addressed, will need to address the necessary data input reliability aims/tolerances that will employed. Emergencies are not the time and place to discover glitches in agency systems. Regularly scheduled testing of the various systems should be worked into annual operating plans for each affected agency. While TMCs may participate in emergency simulation exercises, they may not often practice and rehearse emergency procedures. Many do not have these situations included in the policies and procedures manuals. These obstacles can be addressed by integrating agency-specific emergency preparedness practices into current TMC policies.

B. Necessary institutional agreements may not be in place

Institutional agreements may be the most difficult to address. A recent example of full system technical capabilities being deployed within one state resulted in nearly a decade from final acceptance testing to full system deployment. The technology of the system existed 10 years before the institutional issues allowed the system to reach its full operational deployment. In this example, the agencies were both in the same state but one of the agency databases contained personal information. Aggressively pursuing necessary institutional agreements well in advance of implementation may help shorten the time necessary to accomplish this effort.

C. Cost of integration may not be equitably allocated

During discussions among agencies, how to share the costs of integration will likely be a key concern for each agency. One approach is to hire one consultant team for the entire corridor, and split the cost among the affected agencies based on a previously agreedupon formula. Another is for each state to bear the

cost of all interfaces within that state, while bordering states may consider sharing the integration costs across state lines. Whichever approach is taken, the corridorwide approach may be documented in appropriate memoranda of understanding (MOU) among the states and agencies. The MOU will address which state is responsible for which effort, and help agencies anticipate and resolve conflicts in advance of the implementation.

D. Differences in information standards among agencies

Another institutional effort that has delayed operational improvements that cross jurisdictional and agency boundaries is obtaining agreement among the affected agencies regarding location information. Geographic information system (GIS) coordinates have emerged as a de facto standard; however, agencies that do not have fully developed GIS platforms may find implementation to be an expensive and timeconsuming endeavor. Additionally, data interfaces among various systems have not proven to be a reliable means of accurately relaying location information. The states will need to reach agreement on appropriate improvements to data interfaces, and will need to reach concurrence on a timeframe for coordinated corridorwide geographic information.

E. Agencies may lack formal mutual aid agreements

Joint use of resources so that overlap of resources is minimized is desirable for effective emergency management. This challenge can be addressed with thorough discussions where agreements are documented in MOUs among affected agencies. Typically, many emergency responders have formal mutual aid agreements, but transportation departments do not. By entering into formal agreements with each other, transportation agencies can have many of these challenges addressed in advance.

As previously noted, there have been many recent examples of emergency responders at emergency situations without the ability to communication across agencies. This challenge can be addressed in two ways: through discussions where agreements are documented in MOUs among affected agencies, and through the deployment of new and updated communication systems. Establishing an emergency communications network may not be necessary on a corridorwide basis, but if implemented on a regional basis, it could provide a useful first step.

Security WHITE PAPER

For the I-10 National Freight Corridor June 2007

I. PURPOSE

This white paper provides background information on security-related ITS implementations, with emphasis on port security, border security, and general commercial vehicle security.

The intent of this paper is to provide supporting information to the corridor's Technical Advisory Committee (TAC) in its decisions regarding the ITS architecture and initial program. Toward these ends, this paper provides a background discussion of security issues and a discussion of likely benefits and potential problems relating to systems deployment in the I-10 Corridor.

II. BACKGROUND

Security has long been a concern with respect to goods movement. Today, with approximately 80 percent of trade conducted over seas, ports, and highways in the journey to the final destination, security concerns remain significant to shippers. Goods lost to theft result in significant costs to private industry, while the transport of illegal goods and the evasion of taxes cost the federal government money and create security holes that endanger everyone.

If one takes a look at the various vehicles used to complete transport of an item, it becomes increasingly evident that security in goods movement plays a key role in homeland security efforts. Examining the potential roles of ships and the shipping network in security threats reveals a wide range of potential threats that necessitate appropriate security measures. A ship could be used as weapon or be used to carry deadly weapons, transport a dangerous cargo, or be a potential target if its cargo could cause potential largescale loss of life. Adding in the potential of nuclear, bacteriological, or chemical threats by sea underscores the scale of the concern.

Security efforts are significant even after the cargo arrives in its country of destination. Cargoes that arrive by sea must then be tracked to ensure that illicit goods are not shipped via the roadway system. The U.S. highway system provides many alternate routes to nearly any location. The vast scale of the global shipping network necessitates a global approach to a homeland security system to ensure that ports and highways are protected.

As a vital economic link in the national economy, the I-10 Corridor is also a vital link in the global security chain of goods movement between the United States and the rest of the world, and the I-10 Corridor states must play an active role in ensuring the security of the global supply chain. The security issues that directly face I-10 are related to border crossings, port operations, and customs. The issues that are addressed in this white paper reflect this position.

A. Definition

Security is treated differently from other user services in the National ITS Architecture. There are several user services defined as "ITS Security Areas" that spread out among the user service bundles. Each area has defined subsystems, architecture flows, market packages, and supporting physical and logical architectures. The items defined as "Securing ITS" are

more operational concerns that need to be addressed for the ITS Security Areas to function properly.

Figure 1. ITS Security and the National ITS Architecture

http://www.iteris.com/itsarch/html/security/securityhome.htm

Security Management

The security areas that are of most concern to the I-10 Freight Corridor include:

- Disaster Response and Evacuation tied to traveler information concerning events such as hurricanes and earthquakes
- Freight and Commercial Vehicle Security port and border operations, as well as general freight security
- ITS Wide-Area Alert more a function of traveler information
- Transportation Infrastructure Security protecting critical portions of the I-10 Corridor (e.g., the bridge over Lake Pontchartrain)

B. General security issues

The "Securing ITS" items shown in Figure 1 include a wide variety of areas, including some from outside of the traditional ITS and transportation areas that deal

with more general security issues. These are described below:

Information Security is related to the general

security of data, specifically, the origin, transmittal, and destination of the information itself. The items listed on the ITS architecture include confidentiality, integrity, availability, accountability, authentication, auditing, and access control. Most of these areas are general Information Technology responsibilities.

Operational Security is related to the protection of the ITS physical infrastructure: This includes protecting ITS assets against both physical and environmental threats. This area provides monitoring, access control, configuration control, and security incident and materials management of critical ITS assets. The use of ITS to protect transportation infrastructure is one of the security areas listed above. This area is once removed from those issues and can be defined as protecting the assets that are protecting the assets.

Personnel Security relates to the management of the personnel associated with ITS: It is intended to ensure that ITS personnel do not inadvertently or maliciously cause harm to ITS assets and that all personnel have proper training in the event there is a security-related incident. Much of what is listed on the ITS architecture web site is well beyond the focus of this white paper. Items such as personnel screening, supervisory controls, privileges, and accountability should be designed into all ITS systems. Their success is more a function of the management of a particular system.

Security Management is closely related to Personnel Security: It focuses on the management of

the centers, the personnel, and the systems. It includes policies, procedures, roles, and responsibilities. As with Personnel Security, it is not a focus of this white paper.

All these definitions can be summarized as they apply to the I-10 Freight Corridor. The issues of importance to this corridor are border crossings, port operations, commercial vehicle operations (CVO) security, and inspections – either for illegal goods or the sum of administrative responsibilities that are required for customs and taxation.

C. Sources of threats

There are numerous threats that must be considered when evaluating global supply chain security. While all of these areas apply to the I-10 Corridor, the majority of the threats are assumed to occur outside of the I-10 Corridor. The possibility that the contents of a container might be tampered with or that documentation might be modified is a threat that can most effectively be addressed when the container is outside of U.S. jurisdiction. I-10 stakeholders typically assume a secondary role with respect to this area. It is assumed that the I-10 stakeholders would fully cooperate with federal or other authorities in these matters, but that other agencies would be the lead.

D. Necessary processes for security

In order to sustain a security system, the following activities must be practiced:

Engage all partners, custodians in the process:

Because I-10 shipments cross numerous jurisdictions, it is important to identify and include as many stakeholders as possible. These include a wide variety of public and private sector personnel. **Create economic incentives for compliance:** Efforts to improve security often impose costs, and where security requirements are added on to pre-existing processes, those costs may provide an incentive to circumvent the process. Reinventing processes to emphasize cost savings for full compliance can greatly reduce the incentive to bypass security procedures.

Reach across the entire supply chain: As previously discussed, many of the potential threats to I-10 shipments and facilities are outside of U.S. jurisdiction, while potential targets can be found at any number of points along a shipment's path. Involving people and process along the entire supply chain can help identify weaknesses in supply chain security.

Improve cooperation between government and the private sector: The need to improve security has provided both government agencies and private sector shippers and carriers with incentives to take a greater interest in each other's roles.

E. Border security

While I-10 itself does not cross any international borders, the I-10 Corridor serves ports that handle international maritime shipments and much of the commercial vehicle traffic between the United States and Mexico uses I-10. Border crossings are assumed to be included as vital links with this corridor.

For promoting and maintaining security, the most obvious areas that apply to I-10 are with intergovernmental cooperation. As a multistate corridor, intergovernmental cooperation is integral to I-10 operations. To further enhance security and improve intergovernmental cooperation and

coordination, it will be necessary to ensure that federal and state agencies, as well as private sector entities, are included as stakeholders.

Ensuring the security of the I-10 Corridor will require a network of system integration and processes oriented around global supply chain security. This network approach is similar to current traffic management center (TMC) integration efforts. Items that comprise a global security system include the following:

- Net-centric enterprise open architecture
- Physical security of supply source
- Technology
- Real time alarms and alerts
- Data security (IT policies and procedures)
- Preventative detention and actionable intelligence

The role of these components will become more prominent as TMC integration (with other TMCs, with CAD systems, and with law enforcement) becomes more prevalent. The individual items may not directly apply, but the concept of shared security is important to TMC operations.

III. EXISTING EFFORTS

As previously mentioned, many of the border crossing initiatives are not directly along I-10, nor do they involve the major I-10 stakeholders. However, many of these initiatives are in place at maritime ports in Southern California and along the Gulf of Mexico. As these technologies and projects become more commonplace, their importance and relevance to I-10 will grow. The technologies listed below are among those currently in use or under consideration for a complete global security system.

A. Container and vehicle tracking

- eSeal
- GPS (Global Positioning System)
- GLS (Global Location Services)
- RFID (Radio Frequency Identification)
- EPC (Electronic Product Code)

All of these are included in either private sector initiatives or larger federal efforts. eSeal will affect all future container movements along I-10. The other efforts are generally more focused on fleet management from a private sector experience. They could be used partially for public sector applications, such as HAZMAT tracking, where I-10 stakeholders could benefit from joint use of a technology.

B. Nonintrusive inspection

Nonintrusive inspection is expected to become routine at border crossings, and is already in use in some areas. Florida currently uses nonintrusive inspection in its mobile VACIS systems. Use of nonintrusive inspection is expected to increase at maritime ports. The impact of these implementations is expected to be largely felt within port operations, and will therefore have minimal impact on the operations of I-10. Increased use of systems on a more targeted basis is also expected.

Nonintrusive technologies likely to be implemented at corridor ports and border crossings include the following:

- X-Ray
- Gamma

- Infrared
- UWB (ultra-wideband)

C. Intrusion detection

As with the previous category, these are expected to be more prevalent at border crossings and within ports. Mobile or sporadic applications along I-10 are not expected in the near term. Intrusion detection technologies likely to be implemented at corridor ports and border crossings include systems capable of detecting the following threats:

- Nuclear
- Biological
- Chemical

D. Other technologies

Many of the security deployments are very similar to ITS. Closed-circuit television (CCTV) cameras, for example, can service both ITS and security needs. In both security and transportation operations, the equipment is often the same, though the use and intent are often different.

- *CCTV*
- biometrics
- digital pictures

E. Operation safe commerce (OSC)

OSC was a Transportation Security Administration (TSA) initiative to capitalize public-private partnerships for end-to-end supply chain security to protect against acts of terrorism. It was a private, public, government, and industry initiative to increase global cargo security and provide evolving policy sets for future intermodal cargo security standards. OSC is not a pure technology effort, but is instead concerned with evaluation and enhancement of policies (governmental), procedures (logistics), and processes (physical).

IV. POTENTIAL LONG-TERM APPLICATIONS AND BENEFITS

This section identifies some longer-term ITS projects for the corridor, and discusses how they may be implemented. Examples of various technologies are provided in the accompanying illustrations.

A. Mexico border

Several existing efforts are currently found at border crossings. Many of these are intended to help make the crossing as efficient as possible. Others are in place to provide sufficient security. All are assumed to become more prevalent, and possibly required, for crossing the border. Future border crossing operations will likely feature increased use of biometrics and other methods of verifying operator identities. Federal efforts to make inspections seamless and efficient will need the capability to identify smugglers quickly, while allowing other travelers and truckers to cross with minimal delays. In light of the volume of vehicles and people crossing the border daily, any time savings will quickly result in significant cost savings for government inspection services as well as for shippers and travelers.

The major obstacles to implementation of these efforts are largely technological. They include identifying and implementing secure methods of quickly verifying identity and developing cost-effective methods of remotely scanning containers and cargoes.

B. Port operations projects

The maritime ports along the I-10 Corridor fall into two distinct classes. The ports of Southern California typically handle large volumes of containers arriving from Asia, while Gulf Coast ports typically handle smaller volumes of trade between the United States and Latin America. In addition to the different scale of trade, the different regions typically process different types of goods.

In both cases, commercial vehicle traffic will need to be processed within the port more efficiently. Much of the daily effort of port operations relates to traffic management, and movement of vehicles within the port is generally the concern of the port operator. The I-10 Corridor can share experiences to help improve the operations, but the general flow is more dependent on the physical constraints of the facility and the willingness of the facility operator to make changes.

Moving goods efficiently yet securely through customs inspection is one area where ITS efforts may be helpful. Most projects aimed at this goal are federal initiatives. As such, they are more guided by federal interests than by local interests. Still, local stakeholders should be involved in these projects wherever possible.

C. CVISN credentialing projects

Many Commercial Vehicle Information Systems and Networks (CVISN) efforts address the administrative end of commercial vehicle and goods movements. These procedures can be of great value in ensuring security, and as they become more integrated into both the local and global supply chain, it will become increasingly more difficult for security breaches to go unnoticed. The increased use of electronics to verify loads, combined with the previously mentioned security of the data networks themselves, will create an environment that will be more difficult for entities to violate laws.

D. Joint efforts with private sector

The security needs of the private sector are somewhat different from those of the public sector. Theft of goods is a central concern to shippers and carriers, but in the public sector, this concern is addressed not as a transportation issue, but as one of law enforcement. However, in addressing transportation and public security concerns, the public sector could often benefit from joint use of some information or allowing an installation of additional equipment to take advantage of this technology for additional uses such as special preclearance or faster inspections.

E. Faster inspection points, possibly beyond the border with rail

The diagrams in the appendix illustrate some of the larger concepts within freight security. They are included as representations of potential teaming opportunities. The I-10 Corridor recognizes that the corridor states are a vital link in the global supply chain, even if the efforts are generally led by another group.

V. BENEFITS TO OWNERS, AUTHORITIES, AND OPERATORS

The benefits to commercial vehicle owners and operators are generally viewed from the financial perspective. They include concerns such as improving competitive advantages, increasing throughput, improved operational efficiency, reduced losses (time, material, etc.), and reduced costs. Indirect benefits can

include better asset tracking and visibility and improvements in accountability, verification of cargo movement, and supply chain documentation.

All of these items relate to the financial aspects of goods movement. While this is important for the corridor, the public sector participants have a different view of what is important. For the public sector, the needs of the public in general are addressed by making the roads safer and by preventing terrorist acts. Some potential public sector interest projects include the detection, record keeping, and handling of hazardous materials and cargo, and the documentation and information relating to asset tracking and visibility. Tracking of hazardous materials is critical for the public safety and well being. Accidents related to hazardous materials can cause considerable congestion and endanger many. The ability to monitor hazardous materials, and quickly identify what the emergency responders have to deal with at an accident, is an important tool for reducing congestion along I-10.

VI. POTENTIAL DEPLOYMENT OBSTACLES

Institutional issues are generally more difficult to address than technical issues, even more so when they involve security. Institutional issues are compounded by the large number of entities involved. Where many other projects can be accomplished in a relatively small multistate demonstration project, security projects often involve one or more federal agencies, increasing the complexity of institutional issues. This also may dilute the value of the I-10 Corridor; i.e., if the federal government wants to do something nationally, other corridors may benefit before I-10. This issue may also require the involvement of law enforcement at various levels. It is also primarily an issue for those other agencies, so transportation cannot take the lead on many of these issues.

A. Mexico border

Border crossing initiatives typically require involvement of the federal government, and may also involve international agencies. The increased number of participants necessarily increases institutional complexity. These issues will be solved primarily through continuous interaction with the other groups, and can be expected to diminish over time as the various agencies become more accustomed to working together.

Another concern is that issues at the border may be viewed as more of a national effort, leading to a reduced role for local stakeholders. While it is likely the state DOTs will be invited, other stakeholders may have a hard time participating in committees and being recognized. The state DOTs will need to work to ensure that they represent the greater interests of the I-10 Corridor.

Continuity is also a concern. It is assumed that the federal government will eventually ensure that all border crossings have similar systems and programs. However, this will likely be accomplished over time. It is important for the corridor that this continuity is a major goal of the federal government.

B. Port operations

Due to the different nature of the ports of Southern California versus those of the Gulf Coast, there may be different operational improvements that need to be instituted to improve operations. The ports of Southern California have a large steady stream of trucks leaving with containers. The efficient

management of those containers is critical to the success of the port. The operations of the ports along the Gulf Coast may not require similar projects or initiatives.

Many of the issues with maritime ports can be addressed within the port facilities themselves. There is often little that can be done as a corridor within these constraints. Those operational efficiencies within the ports do not require much interaction between agencies, but can be accomplished solely by the operators themselves. This may lead to later problems with a lack of integration on efforts that otherwise appear to be best accomplished through coordination.

C. Dealing with private sector community

Numerous projects – both internal to companies and in cooperative groups – are aimed at finding competitive advantages to streamlining international shipping operations. These can be specific to security; i.e., how to demonstrate compliance with a minimal impact on operations. The private sector is not always willing to share their results and may be less willing to participate in a project unless they see a competitive advantage. Getting good information from them will be a challenge.

D. Information sharing

Many of the participants in security area have different levels of willingness to share information. As demonstrated in traffic operations and traveler information, sharing of information is what promotes efficiencies and enables integration. Law enforcement agencies have become more open to sharing information among themselves. This does not necessarily translate to sharing with transportation agencies. Also, as mentioned above, the private sector may not be very willing to share information.

Guardian sensor used in shipping containers

Track and Monitor Complete Shipping Cycle

Complex Distribution System

Equipment Installation and Monitoring

Total Asset Visibility and Authentication

Incident Management

WHITE PAPER

For the I-10 National Freight Corridor January 2008

I. PURPOSE

This white paper provides information on incident management (IM) user services. It is intended to support the Technical Advisory Committee (TAC) in its decisions regarding the corridor's ITS architecture and initial program. Toward this end, this paper provides a definition of incident management and summarizes technical and institutional aspects of IM in the I-10 Corridor and potential actions and applications. Barriers to deploying ITS technologies are also examined, along with their potential solutions.

II. DEFINITION

A traffic incident is a nonrecurring event that causes a reduction of roadway capacity or an abnormal increase in demand. Incidents can result in traveler delay, increased fuel consumption, and reduced air quality. Secondary crashes can be a related problem. Traffic incidents can also pose a danger to response personnel on the scene.²

IM is the systematic, planned, and coordinated use of human, institutional, mechanical, and technical resources to reduce the duration and impact of traffic incidents. IM is intended to improve the safety of motorists, crash victims, and traffic incident responders. Thus, the overall aims are the mutually supporting safety of everyone involved in a traffic incident and the minimization of adverse impacts on traffic flow. IM is closely related to special event management and emergency management, with the main differences found in the depth of response, the degree of advanced notice, and the geographic extent of the response.

Effective IM features structured, interjurisdictional, multidisciplinary, and fully documented procedures. More than just technologies and their use, successful IM must be fully integrated into the culture of the stakeholder institutions. Effective use of available resources increases the overall operating efficiency, safety, and mobility of the highway.

Although often associated most prominently with limited access roadways, IM broadly applies to all types of roadways. An IM program covers an integrated set of management activities tailored to a specific geographic area. The I-10 ITS program should recognize the existing coverage of traffic IM activities within each state and region, and address gaps and overlaps in that coverage.

III. EXISTING EFFORTS

In the National ITS Architecture, the IM user service has four major functions: incident identification, response formulation, response implementation, and prediction of hazardous conditions. These functions can be handled at the strategic, tactical, and technical/ communications levels, as detailed in Section IV.

In the last few years, a number of related publications and reference materials have become available. The Traffic Incident Management Handbook is a primary reference that provides in-depth discussion of traffic

² Freeway Management and Operations Handbook, Chapter 10, "Traffic Incident Management." Federal Highway Administration, September 2003.

incident management.³ The National Traffic Incident Management Coalition (NTIMC) is a relatively new assembly of associated agencies and stakeholders. Their web site provides a wealth of materials, including a listing of participating agencies and related activities.⁴

In 2004, the U.S. Department of Homeland Security published an overview of IM-related activities. The National Incident Management System (NIMS) recommends many of the concepts of the National ITS Architecture, including concepts such as interoperability, coordination, and technology advancement.⁵ NIMS also emphasizes concepts such as incident command, comprehensive communications, and information dissemination. However, the NIMS title co-opts the transportation meaning of "incident management," changing it from traffic accidents/flow disruptions to broader security activities. Many recent transportation publications thus use the term "traffic incident management" to clarify scope.

Most urban areas along I-10 have formal incident management programs, including service patrols. Incident management programs may include coordination efforts with incident responders and local Traffic Management Centers (TMCs). IM programs can also include policies and procedures. Florida Turnpike Enterprise's Roadway Incident Scene Clearance (RISC) program resulted from policy changes and legislation that enabled the DOT to contract with private tow operators, greatly improving the agency's ability to clear the roads quickly after an incident. An innovative aspect of this program is a \$2,500 bonus to the towing company if accident response time is less than an hour and clearance time is under 90 minutes.⁶ The SunGuide ITS program for South Florida has numerous resource materials covering ongoing IM activities.⁷

California's ITS efforts provide another example. Caltrans includes operational roles and responsibilities for traffic management in its statewide ITS deployment plan, including the roles of the various Caltrans districts, Caltrans headquarters, local police, regional agencies, and the California Highway Patrol. In April 2007, the state convened a California Highway Incident Management Summit that brought together various participating agencies, including transportation, law enforcement, fire, ambulance, coroner, local agencies, and towing and media representatives. The director of Caltrans and others expressed the goal of clearing highway incidents within 90 minutes.⁸

IV. POTENTIAL APPLICATIONS AND BENEFITS

This section identifies potential applications for the corridor and discusses how they may be accomplished. Anticipated benefits of these applications include

³ *Traffic Incident Management Handbook*, Federal Highway Administration, November 2000,

http://www.itsdocs.fhwa.dot.gov/jpodocs/rept_mis/13286.pdf. ⁴ National Traffic Incident Management Coalition,

http://timcoalition.org.

⁵ National Incident Management System, U.S. Department of Homeland Security, draft revised version, August 2007, http://www.fema.gov/emergency/nims/nims_doc.shtm.

⁶ "Utilize clearance time incentives when contracting with towing service providers to reduce incident clearance times," http://www.itslessons.its.dot.gov/its/benecost.nsf/Lesson?OpenFor m&C6D2B17220D963028525707E0061C53B%5ELLCats.

⁷ SunGuide Traffic Incident web page,

http://www.sunguide.org/trafficincident.asp?area=tim.

⁸ California Highway Incident Management Summit, April 3-4, 2007, Riverside, CA,

http://www.dot.ca.gov/hq/traffops/summit.html.

making IM more responsive and efficient, ultimately minimizing the adverse effects of these disruptive occurrences, thus improving both safety and efficiency.

IM can be thought of as including three general areas of activity. Strategic activities cover planning and institutional issues, tactical activities include on-site management, while technical and communications activities deal with critical support components. All of these activities include some degree of overlap.

A. Strategic activities

Strategic activities include the following:

Interagency Coordination: The key players are law enforcement, fire and rescue, emergency medical services, towing and recovery, environmental protection (for hazardous materials), and transportation agencies. It is critical that all of these agencies work closely together. The most important overall action is ensuring that the key players have a strong working relationship that enables and facilitates coordination. This can begin with a critical review of the status of interagency coordination throughout the I-10 Corridor, with an eye toward identifying weak spots and "lessons learned" from past IM experience.

International Practices and Lessons: Innovative international practices should be investigated, recognizing institutional and cultural differences, for applicability to the I-10 Corridor.⁹

⁹ "Traffic Incident Response Scan April 8-24, 2005," in *World Highways*, 8/15/2005,

B. Tactical activities

Incident Command System (ICS): With emerging NIMS and SAFETEA-LU requirements, a greater emphasis on the ICS can be expected from national directives and funding agencies, and the strategic agencies active in the I-10 Corridor need to actively participate in its local application.

Improved Site Management: As emergency responders and traffic personnel improve coordination, more proactive onsite management should evolve. In addition, to better vehicle positioning, many IM personnel feel that less use of flashing lights and more use of standardized vest colors by on-site role (e.g., medical, fire, traffic management) will enhance incident response.

Quick Clearance Policies and "Move It" Laws:

These should be reviewed throughout the I-10 states, with the goal of removing vehicles from the interstate as quickly as possible. The cited Florida SunGuide system that offers a cash bonus to towing companies that quickly remove incidents is an example of how to minimize incident impact on the general traveling public and reduce likelihood of secondary incidents.

Real Time Performance Measurement: Real time monitoring of volumes, speeds, and delays is needed to help manage ongoing incidents as well as for planning future IM deployments.¹⁰ Initial levels of corridor traffic activity and incidents should be evaluated, and recommendations developed for additional detector coverage on both I-10 and major alternate routes.

http://www.nysmpos.org/pdf/Safety%20Forum/FHWA%20AAS HTO%20European%20scan%20report%20final.pdf.

¹⁰ Incident Management Performance Measures, TTI, K. Balke, D. Fenno, and B. Ullman, FHWA Contract Number: DTFH61-01-C-000182, November 2002,

http://ops.fhwa.dot.gov/incidentmgmt/docs/impmrptf.pdf.

Review of National IM Experience: As at the strategic level, experience sources such as the NTIMC should be consulted by I-10 agencies on an ongoing basis.

C. Technical and communications activities

Interoperability and Communications among First Responders: While steadily improving at the national level, further advances are needed.¹¹ The I-10 Corridor agencies again can learn from the technical and institutional lessons.

Information Dissemination: Advanced Traveler Information Systems are constantly improving for normal traffic operations, but incidents require especially quick and accurate pre-trip and in-vehicle information during travel. All avenues to provide the most timely, accurate, and complete information possible should be evaluated and expanded for the corridor, including highway advisory radio and dynamic message signs, commercial AM/FM radio, web pages, and portable text-capable equipment such as personal digital assistants (PDAs) or cell phones.

Software Evolution: Many commercially available tools can help an agency prepare for and manage incidents. Ensuring compatibility between the software tools used by coordinating agencies can greatly enhance communication. One initiative is to integrate the computer-aided dispatch (CAD) software used by incident responders with the TMC software used for freeway management. A status review of agency software along the entire corridor will aid in recommending improvements and enhancements.

V. POTENTIAL DEPLOYMENT OBSTACLES

Potential obstacles for IM are essentially the same as those for emergency management, as identified in the Emergency Management (EM) white paper. Because dealing with small-scale occurrences across a region demands a localized response, the obstacles for IM tend to be more localized. EM, by contrast, generally has a greater emphasis on large-scale events with a regional scope, such as hurricanes and other weatherrelated events.

For many incidents, the primary focus will remain on the incident responders. At the same time, effective functioning of the transportation system can be critical for getting resources to and from an incident. Perhaps the most significant institutional issue is ensuring that incident responders increase their coordination with the transportation agencies. The concern is that while the desire to better coordinate exists from the transportation perspective, it is often not viewed as a high priority from the incident responder perspective.

The corresponding technical aspect is seamless operations. The last thing incident responders want to do is to be forced to do additional work while in the middle of an incident. Ideally, ITS projects will foster coordination and information sharing without requiring responders to do anything different or extraneous.

This section highlights potential issues and actions to share information or achieve necessary coordination.

 ¹¹ "Slow going for DHS' interoperability effort," Government Computer News, 1/26/06, http://www.gcn.com/vol1_no1/daily-updates/38101-1.html.

A. Agency-specific practices inconsistent with TMC policies

Each system described, once the institutional issues have been addressed, will need to address the necessary data input reliability aims/tolerances that will be employed during incidents. Live incidents are not the time and place to discover glitches in agency systems. Agency-specific incident preparedness practices should be fully integrated into current TMC policies, including routine post-incident reviews of "lessons learned."

B. Necessary institutional agreements may not be in place

Institutional agreements may be the most difficult to address. A recent example of full system technical capabilities being deployed within one state resulted in nearly a decade from final acceptance testing to full system deployment. In this case, the agencies were in the same state, but one of the agency databases contained personal information. Aggressively pursuing necessary institutional agreements well in advance of implementation should help shorten the time necessary to accomplish the effort.

C. Cost of integration may not be equitably allocated

During agency discussions, how to share the costs of integration will likely be a key concern. One approach is to hire one consultant team for an entire region, and split the cost among the affected agencies based on a previously agreed-to formula. Another is for each subarea within the region to bear the cost of all interfaces within the subarea, while bordering subareas may consider sharing the integration costs across subarea lines. Regardless of the approach, it should be documented in appropriate memoranda of understanding (MOU) among the agencies. The MOU will address which subarea is responsible for which effort, and help agencies anticipate and resolve conflicts in advance of implementation.

D. Differences in location standards among agencies

Another institutional effort that has delayed operational improvements that cross jurisdictional and agency boundaries is obtaining agreement among the affected agencies regarding location information. Decimal degree coordinates (latitude and longitude) have emerged as a de facto standard, but agencies that do not have fully developed GIS platforms may find implementation to be expensive and time consuming. Additionally, data interfaces among various systems have not proven to be a reliable means of accurately relaying location information. Subareas will need to reach agreement on appropriate improvements to data interfaces, and will need to reach concurrence on a time frame for coordinated regionwide geographic information.

E. Agencies may lack formal mutual aid agreements

Joint use of resources so that overlap of resources is minimized is desirable for effective incident management. This challenge can be addressed with discussions among the parties, followed by MOUs documenting the commitments. Typically, many incident responders have formal mutual aid agreements, but transportation departments do not. By entering into formal agreements with each other,

transportation agencies can anticipate many of the challenges in advance.

There are some recent examples of incident responders at incident sites without the ability to communicate between agencies. This challenge can be addressed through documented agreements that lay out on-site operational procedures among affected agencies, and through the deployment of new and updated communication systems. Providing an emergency communications network on a regionwide or even corridorwide basis could be a useful step.

Public-Private Partnerships

WHITE PAPER

For the I-10 National Freight Corridor January 2008

I. PURPOSE

This white paper provides background information on public-private partnerships (PPPs) and the opportunities that PPPs can offer to the I-10 Corridor. It is intended to support the I-10 Freight Corridor Technical Advisory Committee (TAC) in its decisions regarding how to fulfill the corridorwide program plan. The paper focuses on PPP efforts of public sector entities and related issues in the I-10 Corridor. It also briefly describes the anticipated benefits of a PPP, as well as the potential challenges that must be addressed to successfully use PPPs as a means of fulfilling the corridor's program plan.

In July 2007, the Federal Highway Administration (FHWA) released a "User Guidebook on Implementing Public-Private Partnerships for Transportation Infrastructure Projects in the United States" and "Case Studies of Transportation Public-Private Partnerships in the United States." The first document, the users' guide, is summarized in this white paper. Information from the U.S. case studies and other sources are referenced as footnotes in this white paper.

II. PPP DEFINITION AND BACKGROUND

For the purposes of this paper, PPPs are assumed to be a means of developing and implementing transportation infrastructure projects. By one definition, PPPs are contractual agreements under which the public and private sectors join together in a partnership to use the best skills and capabilities of each to better serve the public and to provide the highest quality service at optimal cost.¹² In general, the ITS community has often taken a more strict interpretation – one where a significant amount of the total cost is assumed by the private sector. For the purpose of this paper, the more liberal view is taken. The intent is to illustrate a variety of financing options available to the I-10 states.

Although federal monies for transportation have increased, the various transportation needs in the United States continue to exceed the funding available. This disparity has led the FHWA to look to the private sector for expertise that may not be readily available in the public sector to bring a greater degree of innovation and efficiency to transportation project implementation. PPPs can provide new, innovative sources of funding that can facilitate needed transportation projects. PPPs can also provide a means to more efficiently allocate risks between the public sector and the private sector.

Through innovative financing, PPPs can provide greater flexibility in the design, construction, and maintenance of transportation facilities.¹³ In the 2007 users' guide, the U.S. Department of Transportation and its surface transportation administrations encourage their counterparts at the state and local government levels to consider the use of PPP approaches to accomplish more projects in their work programs.

¹² "Critical Choices: The Debate Over Public-Private Partnerships and What it Means for America's Future," The National Council for Public-Private Partnerships, September 2003.

¹³ "Manual for Using Public-Private Partnerships on Highway Projects," U.S. Department of Transportation Federal Highway Administration, November 2005.

A. PPP selection potential criteria

There is no single set of criteria for determining whether a PPP is right for a particular project. However, the criteria listed below are potential considerations for PPP at the beginning of the project planning process. These criteria can help determine whether a project is suitable for a PPP and, if so, the kind of contract and project delivery arrangements that would be deemed most appropriate to the project.

Legal authority to use various PPP approaches. Not all states or agencies have the legal authority to execute PPP contracts and different states may have differing approaches to PPP.

Stakeholder desire: A PPP should only be considered if an agency is concerned that their current contracting process will not address the possible unique characteristics of a project. If the agency is not willing to try a different process, the PPP will ultimately not be successful.

Demonstrated transportation need: Congestion, safety, pollution, and travel reliability.

Sponsoring agency lacking resources to fund or deliver the project on its own. This lack of resources should not be a short-term issue (e.g., this program year there is less money available than last), but must be considered within the long-term program (i.e., there is no commitment from the public agency over the long term to invest more than a certain amount in a project).

Strong commitment by key stakeholders: Political leaders (project champion), public agency officials, facility users, and the general public.

Large and complicated project warranting substantial private participation and assumption of project risks; generally over \$500 million in construction costs for capital projects but lower amounts for ITS.

Adequate funding potential: Tolls, availability payments, joint development, and right of way.

Strong partner relationships: Competence and trust among members of the PPP.

Level playing field for bidding teams: Unbiased procurement process.

Public sector and private sector selection criteria can overlap in some areas, even as each side has its own distinct priorities. It is important for both sides to understand each other's priorities in evaluating projects as candidates for PPPs and determining whether it is advantageous to pursue them through some kind of partnering arrangement. However, given the FHWA encouragement for state and local agencies to consider using PPPs as delivery mechanisms, there are five related questions that are to be addressed by project sponsors and prospective private partners before proceeding with PPPs as a delivery option:

- 1. Are the necessary legal, political, and institutional frameworks (enabling state or local government to undertake this PPP project) in place?
- 2. What kind of PPP approach best suits this project or set of projects (e.g., how should the agreement be structured)?
- 3. Does the PPP approach offer greater potential public benefits than traditional project delivery approaches?

- 4. Does the PPP approach selected provide a reasonable balance between public and private responsibilities, risks, and rewards?
- 5. Is the PPP approach in the public's overall best interest (requiring a full examination of engineering and social costs and benefits) while meeting private feasibility requirements?

Table 1 provides a summary of criteria for selecting PPP approaches. The left two columns summarize the criteria used by prospective sponsoring agencies to determine if a project is suitable for delivery as a PPP project: project scale and public demand. If the result is affirmative, the right two columns can help determine which type of project delivery and financing approaches to pursue, including the development stage of the project, the risk profile, and the potential for funding from traditional and alternative sources.

Threshold Criteria for Considering PPPs		Decision Factors for Selecting PPP Approach	
Project Scale	Public Demand	Project Stage and Risk Profile	Project Revenue and Funding Potential
The higher the cost, the more likely the private sector will be needed to bridge the financing gap	Urgency of project to satisfy transportation mobility need	Preliminary concept planning favors PPP approaches that lower cost and maximize potential value capture	Scarce public funding sources to meet transportation program budgets are enhanced by pooling multiple modal program resources
Project complexity: the more complex design and sophisticated financing = greater the potential role for private partners	Significant transportation- related economic development potential	Public sector takes responsibility for environmental clearance and right-of-way acquisition	PPPs enhance ability of project to secure adequate funding and financing
Broader functional scope makes it more likely private partners can leverage public resources	Broad public support for PPP approach to project delivery, financing, and funding approaches used	Design is at less than 30 percent to optimize best practice input by PPP team	Legal authority must exist to permit sponsoring agency to engage in PPPs that include use of private capital financing
Capability of sponsoring public agency not adequate to deliver project by itself in a timely manner	Broad political support for PPP approaches to leverage scarce public funds and expedite project delivery	Post-construction responsibility for operation and maintenance transfers; significant project performance risk to the PPP team	Projects with high initial costs and long-range revenue potential can be more readily obtained through PPP approaches
Low risk tolerance of sponsoring public agency for large, complex projects	Presence of project in state or local transportation improvement plans (STIPs or TIPs)	More project risk, more public sponsor risk aversion = more suitable for PPP	Projects that lack financial feasibility will not attract private sector interest

Table 1. Project-Based Criteria for Selecting PPP Approaches

According to the most recent publications, all of the I-10 Corridor states except New Mexico have the legal authority to use PPPs for transportation projects (legislation is pending in Louisiana). All of the I-10 Corridor states except Alabama have design-build project delivery authority and have completed at least one design-build project in their state. California, Texas, and Florida all have projects operating and projects under development using FHWA's Value Pricing Pilot Program.

B. PPP approaches

Some of the more common approaches to PPP are described below, in ascending order of private sector responsibility, risk, and reward potential. Approaches that may not be applicable to the I-10 corridorwide improvements are not included. Note that PPP approaches continue to evolve to meet both the needs of project sponsors and the circumstances associated with specific projects, and that new approaches continue to be identified and implemented.

The design-bid-build (DBB) process is the traditional approach to delivering transportation projects in the United States. DBB is used as a source of comparison in the following PPP approaches. Several of the PPP approaches described below in this section may not yet be in use in the United States and include:

Private Contract Fee Services/Maintenance

Contract: Public agencies can contract with private sector entities for services that traditionally have been performed in-house, such as planning and environmental studies and program and financial management, and also for operations and maintenance. Contracts are generally awarded in a competitive bid process to the contractor offering the best price and qualifications. The potential benefits of private contract fee services include reduced workload for agency staff, potential for reduced costs, and opportunities to apply innovative technologies, efficiencies, and private sector expertise.

Construction Manager at Risk: Construction Manager at Risk (CM@Risk) uses a separate contract for a construction manager (CM). The CM begins work on the project during the design phase to provide constructability, pricing, and sequencing analysis of the design. The project sponsor generally holds a separate contract with the design team through these initial phases of the CM contract. The CM then becomes the contractor when a guaranteed maximum price is agreed upon by the project sponsor and CM (the risk that the drawings and specifications are free from error is assumed by the CM@Risk, now the contractor). The potential benefits of the CM@Risk approach include the continued advancement of the project during price negotiations, a thorough understanding of project requirements/a shared set of project expectations by the project sponsor and the CM@Risk, and the potential for more optimal teaming because the CM can negotiate will all firms, rather than the project sponsor having to select from a limited number of firms that propose to construct the project.

Design-Build: Unlike DBB, where project design and construction functions are procured sequentially, design-build (DB, sometimes called design-construct) combines the design and construction phases into one fixed-fee contract. Under a DB contract, the design-builder, not the project sponsor, assumes the risk that the drawings and specifications are free from error. In this approach, the design-builder may be one company

or a team of companies working together. The potential benefits of DB delivery compared to traditional DBB delivery include time savings, cost savings, risk sharing, and quality improvement.

Design-Build with a Warranty: Under the DB with a warranty approach, the design-builder guarantees to meet material, workmanship, and performance measures for a specified period after the project has been delivered. The warranties typically are from five to 20 years. The potential benefits of the DB with a warranty approach include the assigning of additional risk to the design-builder and reducing the project sponsor's need for inspections and testing during project delivery.

Design-Build-Operate-Maintain: Under a designbuild-operate-maintain (DBOM) delivery approach, the selected contractor is responsible for the design, construction, operation, and maintenance of the facility for a specified time. The contractor must meet all agreed-upon performance standards relating to physical condition, capacity, congestion, and ride quality. The potential benefits of the DBOM approach are the increased incentives for the delivery of a higher quality plan and project because the design-builder is responsible for the performance of the facility for a specified period of time after construction is completed. The project sponsor retains ownership of the facility as well as the operating revenue risk and any surplus operating revenues.

Design-Build-Finance or Design-Build-Finance-

Operate: These approaches are variations of DB and DBOM, respectively, except that the DB or DBOM team provides some or all of the project financing. The potential benefits of the design-build-finance (DBF) or

design-build-finance-operate (DBFO) approaches are the same as those under the DB and DBOM approaches, but also include the transfer of the financial risks to the design-builder during the contract period. While the project sponsor retains ownership of the facility, the DBF and DBFO approaches attract private financing for the project. The private financing can be repaid with revenues generated during the facility's operation. The project sponsor retains ownership of the facility as well as the operating revenue risk and any surplus operating revenues.

Build-Operate-Transfer or Build-Transfer-Operate: Build-operate-transfer (BOT) is similar to the DBFO approach whereby the contract team is responsible for the design, construction, and operation of the facility for a specified time, after which the ownership and operation of the project is returned to the project sponsor. The potential benefits of using the BOT or build-transfer-operate (BTO) approaches are similar to the benefits associated with using a DBOM contract: increased incentives for the delivery of a higher quality plan and project because the contractor is responsible for the operation of the facility for a specified time period after construction. Under the BTO approach, the project sponsor retains ownership of the facility as well as the operating revenue risk and any surplus operating revenues.

Build-Own-Operate: Under the build-own-operate (BOO) project delivery approach, the design, construction, operation, and maintenance of a facility is the responsibility of the contractor. Under the similar build-own-operate-transfer (BOOT) approach, asset transfer occurs after a specified operating period when the private provider transfers ownership to a

public agency. The major difference between the BOO and the DBOM, DBFO, BOT, and BOOT approaches is that ownership of the facility remains with the private contractor in the case of the BOO approach. As a result, the potential benefits associated with a BOO approach are that the contractor is assigned all operating revenue risk and any surplus revenues for the life of the facility.

Long-Term Lease Agreements/Concessions: Longterm lease agreements involve the lease of publicly financed facilities to a private sector concessionaire for a specified time period. Under the lease, the private sector concessionaire agrees to pay an upfront fee to the public agency to obtain the rights to collect the revenue generated by the facility for a defined period of time (usually from 25 to 99 years). In addition to the concession fee, the concessionaire agrees to operate and maintain the facility, which may include capital improvements in some instances. The potential benefits of long-term lease agreements include transferring responsibility for increases in user fees to the private sector; generating large up-front revenues for the public agency; transferring most project, financial, operational, and other risks to the private concessionaire; and gaining private sector efficiencies in operations and maintenance activities.

C. PPP innovative financing techniques¹⁴

This section identifies financing approaches that may be used for PPP highway projects. Innovative financing techniques complement and enhance existing pay-as-you-go financing. Techniques range from fairly modest strategies that permit states greater flexibility in satisfying the standard matching requirements for receipt of federal funds to very ambitious credit enhancement strategies. Advantages of these financing techniques include better leverage of federal capital dollars, more effective use of existing funds, faster construction than possible with traditional financing mechanisms, and enabling some major infrastructure projects to go forward that might not otherwise receive financing.

Following are brief summaries of some innovative financing approaches for PPP projects:

SEP-15 (Special Experimental Project No. 15) addresses utilization of different methodologies to fulfill federal requirements regarding project delivery. SEP-15's experimental authority requires applicants to fully comply with all requirements of the National Environmental Policy Act (NEPA) and other state and federal environmental laws and regulations. The difference is that the applicant may be permitted to experiment with the procedures used to accomplish such requirements. All SEP-15 applications must come from a state DOT.

Flexible Match relates to the Federal-Aid Highway Program, which statutorily requires recipients of federal assistance to contribute toward the total cost of any given project. In addition, the state typically must provide matching state funds to receive federal funds for a project. Federal-aid provisions allow a wide variety of public and private contributions–including cash, land, materials, and services - to be counted as match. Whether the contribution is eligible depends on the nature of the contribution and the source.

¹⁴ "Manual for Using Public-Private Partnerships on Highway Projects", US DOT Federal Highway Administration, November 2005.

Toll Credits were first authorized with ISTEA in 1991, and as of May 31, 2007, more than \$18 billion in toll credits have been approved. Toll credits are designed to encourage states to increase capital investment in transportation infrastructure and enable states to simplify program administration. The amount of credit earned is based on the amount of toll revenues used to build, improve, or maintain highways, bridges, or tunnels that serve interstate commerce.¹⁵

The I-10 Corridor does not currently plan to implement tolls on the existing mainline route. However, each state that operates a toll facility can take advantage of toll credits. As a quick definition, toll credits are earned by prior expenditure of nonfederal funds to build interstates. Toll credits from prior toll projects in the I-10 Corridor states may be used as a local match for projects in that state. As an example, Florida has been using toll revenues for state match credits on a statewide basis since 1993. This has effectively increased the federal share of Florida's highway program to nearly 100 percent. Other state revenue sources can now be used to help fund other projects.

Infrastructure Banks are a revolving fund mechanism for financing transportation projects through loans and credit enhancement. State Infrastructure Banks (SIBs) typically provide loan assistance or interest subsidies for eligible projects. Legislation for a National Infrastructure Bank is currently under consideration in Congress, but has not yet been passed.¹⁶ **TIFIA** (Transportation Infrastructure Finance and Innovation Act) provides federal credit assistance to the private partners for large-scale projects of regional or national significance and that have some type of dedicated revenue source. TIFIA support can include secured direct loans, loan guarantees, or standby lines of credit. TIFIA may offer more flexible repayment terms and more favorable interest rates than would be available from other lenders. TIFIA credit assistance has many features that make it attractive to private investors, most of which reflect the flexibility and potential long-term nature of the loans and repayment terms.

Section 129(a) loans provide states with a means to recycle federal-aid highway funds by lending them out, obtaining repayments from project revenues, and then reusing the repaid funds on other highway projects. This gives states the opportunity to get more mileage out of the annual apportionments. Once the federal requirements have been satisfied, the repaid federal funds do not have to meet any federal requirements, because federal requirements are not attached to projects advanced with loan repayments. Any federalaid highway project is a potential candidate for a Section 129(a) loan, so long as the project sponsor pledges revenues from a dedicated source for repayment of the loan. Loans can be up to 80 percent of the project cost, provided that a state has sufficient obligation authority to fund the loan.

Private Activity Bonds are tax-exempt bonds that fund privately developed and operated facilities, including highway facilities. Qualified projects include surface transportation projects eligible under Title 23 that are already receiving federal assistance. These bonds are not subject to the general annual volume

¹⁵ FHWA's "Innovative Finance Quarterly," Spring 2007, "What's New in Toll Credits."

¹⁶ The AASHTO Journal, Vol. 107, No. 31, August 3, 2007.

cap for private activity bonds for state agencies and other issuers, but are subject to a separate national cap of \$15 billion. Passage of Private Activity Bond legislation demonstrates the federal government's desire to increase private sector investment in the nation's highway infrastructure. The legislation requires that at least 95 percent of the net proceeds of bond issues be expended for qualified highways or surface freight transfer facilities within a five-year period from the date of issue. Any surface transportation project which receives Title 23 assistance is qualified to benefit from private activity bonds. Because projects that receive TIFIA credit assistance are Title 23 projects, this means that TIFIA projects are also eligible to receive this tax-exempt bonding authority.¹⁷

Highways for LIFE is a new program that is intended to provide an additional incentive for more rapid highway construction. The program has a total of \$75 million authorized through 2009 for incentive grants to fund up to 15 projects. As of June 2007, only Arizona (out of the eight I-10 Corridor states) had received a Highway for LIFE grant.

III. EXISTING EFFORTS

Although a number of PPP projects can be found in the various I-10 states, only a few are directly related to freight movement in the I-10 Corridor. One of these is the South Bay Expressway, a toll road that opened in November 2007. The expressway links the Otay Mesa border crossing to the regional freeway system and I-10, allowing border traffic to bypass much of the San Diego metropolitan area. The total project cost of \$768 million was partially financed with \$140 million in TIFIA loans. 18

IV. POTENTIAL BENEFITS OF PPP IN THE CORRIDOR

This section presents potential benefits from a wellexecuted PPP. It is importation to remember that quality projects may be enhanced with a PPP approach, unfeasible projects are unlikely to become viable even with a PPP approach, and the private sector will avoid "bad" projects if it bears the risk of failure.

Some key advantages of PPPs for transportation projects are the ability to harness additional financial resources and operating efficiencies from the private sector and to expedite development and preservation of public use infrastructure. Table 2 describes the potential benefits of PPPs for surface transportation projects.

If properly developed and executed, PPP projects offer significant potential benefits to sponsors of transportation infrastructure projects. Table 3 summarizes the potential benefits and risks to the public sponsor and private partner. The table shows the complementary nature of the potential advantages of using PPP approaches, and shows which partner is likely to be most sensitive to the various project risks.

¹⁷ USDOT Federal Highway Administration Public-Private Partnership web site; Private Activity Bonds, http://www.fhwa.dot.gov/ppp/private_activity_bonds.htm.

¹⁸ "PPP Case Studies,"

http://www.fhwa.dot.gov/ppp/case_studies.htm.

Additional Resources and Capacity	Accelerated Project Delivery	Reduced Costs and Increased Efficiency	Transfer of Selected Risks to the Private Sector	Greater Access to Technology and Innovation	Increased Accountability for Performance
Leverage scarce public resources	Consolidate sequential functions through concurrent processing	Increase functional coordination to enhance project delivery efficiency	Transfer project cost, schedule, and quality risks to private sector if it can better manage them	Apply most cost- effective technology to reduce project capital and operating costs	Apply performance- based standards, rather than prescriptive- or quantity-based
Provide ready access to additional staff and specialized expertise on a cost-effective, as- needed basis	Improve coordination and communication among partners with aligned incentives	Accelerate project delivery schedule to reduce potential for increased material costs due to inflation	Public sector retains risks associated with environmental clearance, permitting, and right-of-way acquisition	Use asset management tools to reduce life cycle costs at defined levels of service	Apply performance- based material and workmanship warranties
Expand access to private capital markets for debt and equity to increase capability to more promptly finance projects	Reduce potential for claims and extra work order requests	Apply business best practices from domestic and international industry experts with broad exposure to innovative approaches	Recognize risks for both public and private sectors relating to gaining public, political, and institutional support	Use innovative technology that best serves the public	Apply performance- based standards, requirements, and milestones defined in PPP contract
Conserve limited public debt capacity by using private debt and equity in project financing	Provide monetary incentives for early project delivery or service initiation	Apply lifecycle- asset management principles, (i.e., greater investment up front=savings from more durable facility	Avoid moral hazard risks relating to improper actions or corruption in procurement and performance reporting	Access specialized expertise and technical tools	Apply performance- based incentives based on project completion schedule and cost, or project traffic and revenues

Table 2. Summary of PPP Benefits

Table 3. Potential Benefits a	and Risks of PPP	Approaches by Partner
-------------------------------	------------------	-----------------------

Potential Benefits to Public Sponsor	Potential Risks to Public Sponsor		
 Reduced financial constraints/increased financial capacity Expedited project initiation and faster delivery Access to innovative techniques and specialized expertise Integration of project development and delivery with life cycle cost incentives Greater choices in project approaches Increased competition and accountability Risk transfer to entity better able to manage 	 Transaction/administrative costs to procure and monitor PPPs Taxation constraints Moral hazard Control over transportation assets and toll rates Public acceptance Compensation and termination clauses Environmental/archeological clearance Permitting costs Right-of-way costs 		
 Potential Benefits to Private Partner Higher rate of return compared to conventional project delivery approach Greater control over assets/operation/user fees Lower life cycle costs Increased revenues from financial transactions Opportunity to apply best practices and new technology to increase productivity and meet performance standards at lowest life cycle costs Opportunity for value capture from direct users and indirect beneficiaries 	Potential Risks to Private Partner Change in law Economic shifts Public acceptance/protectionism Currency/foreign exchange Political support/stability Moral hazard Project development/maintenance costs Project delivery schedule Financial feasibility/traffic and revenue levels Liability for latent defects Prohibition against noncompete clauses Compensation/termination clauses Transparency requirements		

V. POTENTIAL OBSTACLES AND CHALLENGES TO PPP IN THE CORRIDOR

A. Critical success factors

In developing PPP programs and applying PPP approaches to transportation projects, the following factors listed in priority order are critical to the success of the resulting projects:

- 1. Public and market support for the project and the proposed delivery approach based on demonstrated transportation needs
- 2. Political support from elected officials, including one or more project champions
- 3. Legal authority through established statutes that permit the application of PPPs to transportation projects
- 4. Institutional cooperation from sponsoring agencies lacking the resources (staff, technical, financial) to deliver large or complex projects in a timely manner
- 5. Adequate funding potential from tolls, availability payments, or economic development
- 6. Competitive private sector resources with a level playing field for bidding teams
- 7. Strong partner relationships during contract term based on competence and trust among the members of a PPP

Many of these are very project-specific (e.g., adequate funding potential). The risks associated with these are not unique to the I-10 Corridor. Two issues are very relevant to the I-10 Corridor. The first issue is political support. The I-10 Corridor exists as a cooperative effort among the 10 states. In entering their agreement, the states do recognize that each will do its part to advance the whole. However, if one state or region has great success with a certain approach, it is possible that political support may shift, and the expectations of others within the corridor may change. The second issue is that the Corridors of the Future program is specifically looking for alternative financing methods. The FHWA is expected to strongly encourage the eight states to look at this approach for financing some of the projects within the corridor. If so, those that have the ability to move forward quickly may see some key projects focused in their regions first.

More specifically, the following key ingredients represent public sector guides toward creating a successful PPP project implementation:

- 1. Determine the relative scope and feasibility of the project early on
- 2. Identify a public champion to steer the project from start to completion
- 3. Understand the capabilities of the public sponsor to accomplish the project in a timely manner and the potential advantages of a PPP arrangement
- 4. Involve private sector partners in project conceptualization as soon as possible to gain maximum advantage of their insights and suggestions
- 5. Collaborate and communicate among public and private sector stakeholders from the start of project development and throughout the project
- 6. Enable each party in the PPP to be responsible for those functions it is best able to perform, resulting in the most cost-effective balance between public

and private sector responsibilities, risks, and rewards

- 7. Institute an open, transparent, and fair process to solicit and evaluate PPP proposals from private providers to ensure equal opportunity for all interested bidders and select on the basis of best life cycle value
- 8. Look for receptive partners eager to build a successful long-term partnership with compatible project objectives that reinforce each other
- Apply a flexible project delivery approach, recognizing that all projects are unique and may require unique approaches; focus on performance outcomes/benefits of the project – not the just the procedures
- 10. Ensure that all project risks are understood by all; also ensure that risk mitigation and identification of which party is responsible for such mitigation is clearly understood
- Enable private sector partner(s) to make a reasonable return on their investment – no profit potential means no private capital will be put to risk
- 12. Have each party scrutinize the financial elements of any proposal and subsequent contract, including risk factors and responsibility for addressing financial project risks, approaches to be used for cost management, and performance monitoring and reporting methods and responsibilities
- 13. Keep PPP projects moving forward by having both public and private participants promptly work out issues and problems as partners, with the common goal of successful project completion

- 14. Hold all parties to the PPP accountable for the terms of the contract agreement, while providing flexibility to accommodate changes in site conditions and project scope, and enabling technology for better performance results
- 15. Institute an ongoing project performance monitoring and reporting process to ensure project accountability by both public and private partners

Again, most of these issues are project specific and are not unique to the I-10 Corridor. The exception may be that each contracting agency or authority must pay attention to where their responsibilities end. In particular, no state or region should be able to bind the corridor as a whole to any agreement without the full agreement of all eight states. It is easy when applying the "I-10 National Freight Corridor" label to projects to potentially incorrectly reference the true role of the corridor coalition.

B. Risks and threats to successful completion

Various risks to consider that can impact the cost and feasibility, as well as the revenue potential and financial feasibility of a PPP and its ultimate success, are described below. One of the features of a PPP is the ability to allocate project risks to the partner best able to manage and mitigate these risks. All participants in a PPP should understand these risks and how they can affect a proposed project. All PPPs carry additional risks in a wide variety of areas. The following list represents the greatest potential risks to a PPP arrangement in the I-10 Corridor:

Public Acceptance: Perhaps the greatest risk to a proposed PPP project is the degree of public

acceptance of the project. Greater public acceptance and political support reduces the risk of project development failure or default following completion.

Control of Assets: Concerns have been expressed over the perceived loss of control over transportation infrastructure assets. This risk needs to be addressed early in the PPP process.

Protectionism: An emerging factor in the United States is the nationality of the firms comprising the PPP provider team, especially the lead project development firm and financing companies. This may result in legislative efforts to limit foreign involvement in certain types of PPP projects, or political and public grassroots efforts to oppose PPP projects with significant and highly visible foreign involvement and control.

Political Stability/Support: Continuity of political support for a PPP project is essential to successful development and implementation. Changes in the political structure or composition in an area can significantly impact the success potential of a PPP project, particularly if the status of the project becomes a major issue in a political campaign.

Moral Hazard: It is imperative that the public sponsor maintain complete integrity and transparency throughout the life of the PPP to avoid both the appearance and the reality of conflicts of interest and fraudulent activities. A lapse in one PPP project can negatively impact the potential for the success of that project as well as in other projects in the region and the nation where PPP approaches are novel. The appearance or actuality of distrustful operation of a project will likely result in greater scrutiny and doubt, not only for that project, but for others that follow in its footsteps.

Revenue: The timing of proceeds from tolls, concession, and other nontoll revenues such as advertising, can pose risks to the viability of the project.

Maintenance Costs: For PPP contracts including operations and maintenance, the cost of maintenance and repair activities that may be impacted by the quality of the design and construction, changes in traffic volumes, the weight limits of vehicles using the facility, geological conditions, and adequacy and condition of drainage structures need to be taken into consideration.

Regulatory/Contractual Risks: Address changes in laws, regulations, or contract provisions that impact the cost exposure of one or more of the partners and their responsibility for their costs.

I-10 National Freight Corridor ITS Architecture

Prepared for the National I-10 Freight Corridor Coalition

by Wilbur Smith Associates

January 2008

1. Introduction

1.1 Background

Rapid advances in technology have created many new opportunities for transportation professionals to deliver safer and more efficient transportation services, and to respond proactively to increasing demand for transportation services in many areas and mounting customer expectations; however, many of these new opportunities are predicated upon effective coordination between organizations at both an institutional and technical level.

To encourage this coordination, USDOT has developed the National ITS Architecture and related tools to help identify and exploit these opportunities for cost-effective cooperation.

In 1997, Congress passed the Transportation Equity Act for the 21st century (TEA-21) to address the need to begin to work toward regionally integrated transportation systems. In January 2001, FHWA published Rule 23 CFR 940 and FTA published a companion policy to implement section 5206(e) of TEA-21. This rule/policy seeks to foster regional integration by requiring that all ITS projects funded from the Highway Trust Fund be in conformance with the National ITS Architecture and appropriate standards.

"Conformance with the National ITS Architecture" is defined in the final rule/policy as using the National ITS Architecture to develop a "regional ITS architecture" that would be tailored to address the local situation and ITS investment needs, and the subsequent adherence of ITS projects to the regional ITS architecture.

FHWA Rule 23 CFR 940.9 Regional ITS Architecture states, in part:

"(a) A regional ITS architecture shall be developed to guide the development of ITS projects and programs and be consistent with ITS strategies and projects contained in applicable transportation plans. The National ITS Architecture shall be used as a resource in the development of the regional ITS architecture. The regional ITS architecture shall be on a scale commensurate with the scope of ITS investment in the region. Provision should be made to include participation from the following agencies, as appropriate, in the development of the regional ITS architecture: highway agencies; public safety agencies (e.g., police, fire, emergency/medical); transit operators; federal lands agencies; state motor carrier agencies; and other operating agencies necessary to fully address regional ITS integration.

(b) Any region that is currently implementing ITS projects shall have a regional ITS architecture by April 8, 2005."

This report makes frequent references to the National ITS Architecture as provided by the FHWA. This reference document can be found on the Internet at: http://www.its.dot.gov/arch/arch.htm.

1.1.1 I-10 Corridor Architecture Background

The I-10 Corridor spans across eight states and 16 major cities along the southern boundary of the United States. The entire I-10 Corridor is more than 2,400 miles with approximately 700 miles traversing through

urban areas. Currently, the average daily traffic throughout the entire corridor is more than 41,000 with a maximum of more than 300,000. Average daily truck traffic is more than 8,000 with a maximum of more than 55,000. Among the 700-mile urban segments, more than 53 percent are currently under heavy congestion. Considering the vast nature of the overall corridor transportation system, it is critical to ensure seamless communication between ITS systems along the corridor so the end user gets beneficial services irrespective of the stretch of the corridor one is traveling through.

The I-10 Corridor Architecture will provide a conceptual information exchange framework for multistate coordination and communication to deploy and leverage ITS infrastructure along the corridor. Statewide, regional, and local ITS architectures exist for individual jurisdictions along the I-10 Corridor, but there is a need to address the ITS architecture from a corridor perspective including developing a conceptual framework for corridor-specific ITS systems services.

To leverage previous work along the corridor as well as other statewide and local ITS architectures along the corridor, significant input was derived from these architectures and stakeholder interaction.

1.1.2 ITS Architecture Time Frame

Regional ITS architecture is an evolving document guiding efficient integration of ITS systems over time. For purposes of this activity, a five-year timeframe is selected. A five-year horizon is long enough to include most of the system integration opportunities that can be clearly anticipated by the region's stakeholders per plans and needs identified currently. Although a fiveyear timeframe helps define architecture vision, it is extremely important to understand that an architecture document is a living document, in need of periodic update corresponding to ITS deployment growth in the corridor.

The ITS architecture time frame will need to be adjusted as necessary to match the vision of the stakeholders. It shall not be used to unnecessarily constrain the stakeholders to near-term options, since it is difficult to anticipate exactly when a wellsupported idea will be implemented. Viable integration opportunities should be included in the regional ITS architecture and then reevaluated periodically as the architecture is maintained over time.

1.2 Purpose of Report

This document will serve as the "Corridor ITS Architecture" for the I-10 Freight Corridor, which includes the I-10 freeway corridor passing through 10 different states. As such, it is intended to ensure that ITS technologies are deployed in manner that will allow for communication, interoperability, and compatibility among systems and entities operated by different states along the I-10 Corridor. The terminology "ITS Architecture" comes from the United States Department of Transportation (USDOT) that has set forth a framework for how ITS should be planned and deployed across the nation. This framework allows each agency to design and develop its own systems (freeway management, commercial vehicle operations, etc.) with an understanding of the data structure needed to support a corridorwide effort to share data.

The I-10 Corridor ITS Architecture is being developed in accordance with Version 5.1 of the National ITS

Architecture. Version 5.1 was released in October 2005 in response to the need to improve coverage of transportation security in the National ITS Architecture. Development of the corridor architecture is using Version 3.1 of FHWA's Turbo Architecture tool. This software package was released in May 2004.

Significant input to the architecture development process was provided by the regional/statewide architecture documents developed by several states along the I-10 Corridor, which identified regional stakeholders, existing ITS assets, and planned ITSrelated projects along the corridor. The resulting corridor ITS architecture will provide a basic ITS architecture to support further discussions with other stakeholders, as the architecture continues to grow and evolve in the future.

In order to comply with 23 CFR 940, the I-10 Corridor ITS Architecture report addresses the following topics:

- 1. Architecture Scope and Region Description
- 2. Stakeholder Identification
- 3. System Inventory
- 4. Needs and Services
- 5. Operational Concept
- 6. Interfaces/Information Flows
- 7. Maintenance Plan
- 8. Potential Agreements
- 9. Standards Identification
- 10. Implementation Strategy

1.3 Report Structure

The I-10 Corridor ITS Architecture report is organized into seven key sections:

• Section 1 – Introduction

This section provides an overview of the project background and purpose of this report. Abbreviations and ITS terms used in the report are also listed.

• Section 2 – Regional Overview

This section includes a geographic overview of the region, identifies stakeholders in the region, and provides an inventory of existing ITS assets in the region.

• Section 3 – Corridor Transportation Needs

This section provides a summary of the transportation needs and services in the region, identifies planned ITS systems, and lists ITS market packages relevant to the region's needs.

• Section 4 – Regional Architecture

This section summarizes the tasks undertaken to develop the corridor ITS architecture. An appendix provides interconnect and interface diagrams for the regional ITS architecture.

• Section 5 – Operational Concepts

An operational concept has been prepared that discusses the key functions and services of the envisioned ITS for the region. As part of this concept, operational scenarios are described and roles and responsibilities of stakeholders are discussed. Potential agreements that could be required to support integration and information

sharing are described, as well as functional requirements.

• Section 6 – Architecture Maintenance Plan

This section provides some background on the need for architecture maintenance and addresses key issues for the successful maintenance of a regional architecture.

The I-10 Corridor ITS Architecture report also contains two appendices:

- Appendix A Customized Market Packages
- Appendix B Context Interface Diagrams from Turbo Architecture

1.4 ITS Architecture Abbreviations and Terms

The National ITS Architecture and Turbo Architecture use a variety of abbreviations and terms to describe the many components and relationships represented by the architecture. Some of the abbreviations and terms are listed in tables 1 and 2, respectively. The abbreviations shown include those specific to the various I-10 Corridor jurisdictions.

Table 1. List of Abbreviations

Abbreviation	Meaning
AASHTO	American Association of State Highway and Transportation Officials
ASTM	American Society for Testing and Materials
ATMS	Advanced Traffic Management System
AVL	Automatic Vehicle Location
CCTV	Closed - Circuit Television
CMS	Changeable Message Sign
CRPC	Capital Region Planning Commission
CVO	Commercial Vehicle Operations
DOC	District Operations Center
EIA	Electronic Industries Association
ECC	Emergency Communications Center
EOC	Emergency Operations Center
EOP	Emergency Operations and Preparedness
EV	Emergency Vehicle
FHWA	Federal Highway Administration
HAR	Highway Advisory Radio
HAZMA	Hazardous Materials
I/F	Interface
ISP	Information Service Provider
ITE	Institute of Transportation Engineers
ITS	Intelligent Transportation System
MCM	Maintenance and Construction Management
MCV	Maintenance and Construction Vehicle
MOU	Memorandum of Understanding
MPO	Metropolitan Planning Organization
NEMA	National Electrical Manufacturers Association
NOAA	National Oceanic and Atmospheric Administration
NTCIP	National Transportation Communications for ITS Protocol
RTA	Regional Transportation Authority
RWIS	Road Weather Information System
SAE	Society of Automotive Engineers
SDO	Standards Development Organization
STC	Smart Traffic Center
TCIP	Transit Communication Interface Protocol
TEA-21	Transportation Equity Act for the 21st Century
TEOC	Transportation Emergency Operations Center
TM	Traffic Management
TOC	Traffic Operations Center
USDOT	United States Department of Transportation
USGS	United States Geological Survey

Table 2. ITS Architecture Terms

Term	Definition	
Stakeholders	Anyone who is influenced or has influence on the transportation	
	system in the region.	
Terminators	Represent the people, agencies, systems, and general environment	
	that the architecture serves. Seen as the boundary points for the	
	architecture; everything in the architecture either starts or ends at	
	a terminator.	
User Services	Represent what the ITS system should do from a user's	
	perspective. The entry point into the architecture from stakeholder	
	needs. There are currently 33 user services defined by the	
	National ITS Architecture.	
Flow	The exchange of information from one system or group to another	
	system or group.	
Equipment Package	Groups of similar processes or systems that are put together in an	
	implementable package. The National ITS Architecture currently	
	defines 198 equipment packages.	
Market Package	Combinations of equipment packages that are used to provide a	
052	defined service. The National ITS Architecture currently defines	
	85 market packages.	
Layers	The National ITS Architecture defines three "layers" in the	
394 2	architecture: institutional, communication, and transportation.	
Institutional Layer	This layer represents the existing and emerging institutional	
	constraints and arrangements that will govern the deployment of	
	ITS in the region. "Flows" in the institutional layer are referred to	
	as "information flows."	
Communication Layer	The communication layer includes all communication equipment,	
	media, and related information needed for the transfer of	
2	information among devices, systems, stakeholders, etc.	
Transportation Layer	This layer defines the operational relationships between devices,	
w: (2)	systems, and users.	
Architecture	A framework within which a system can be built. The National	
	Architecture is represented by two architectures (physical and	
	l ogical).	
Physical Architecture	High-level physical representation of the architecture, its major	
	components, and flows. The major purpose of this architecture is	
	to allow users to quickly understand the overall functionality of	
	the ITS system.	
Logical Architecture	The portion of an ITS architecture that defines what functions	
	should be performed by the ITS system, and the relationships	
	between those systems. This architecture goes into more detail	
	regarding the linkages between the system components and	
	interactions.	

2. Regional Overview

This section describes the geographic region, identifies the stakeholders in the region, and lists all existing and planned ITS systems. It concludes with an identification of National ITS Architecture subsystems and terminators that relate to the identified regional systems.

Documentation of the system inventory is an essential initial task in the development of a regional ITS architecture for several reasons:

- It provides a baseline of existing and planned ITS projects and systems in the region
- It outlines which agencies are currently deploying and operating ITS, as well as those planning to implement ITS programs
- It provides a foundation to identify needed elements or agency participation for a regional ITS, which will be important for subsequent tasks, including the market package identification and prioritization, system interface and integration requirements in the region, and ultimately the ITS deployment plan

2.1 Geographic Overview

The region for which this ITS architecture is being developed corresponds to the I-10 freeway corridor spanning across several states along the southern boundary of the United States. The representation of the region is illustrated in Figure 1.

2.1.1 General Description of the Corridor

As part of its prior work on the National I-10 Freight Corridor Study, the Wilbur Smith Associates team has developed a technical memorandum describing the corridor definition and all the transportation facilities in the corridor (the 'Corridor Definition' document can be accessed at

http://www.i10freightstudy.org/assets/Technical%20 Memorandum%201.pdf). The I-10 Corridor focuses on all elements of freight transportation, including roadways, ports, airports, railroads, and intermodal facilities along the I-10 Corridor.

2.1.2 Initial Service Scope

While specific identification of ITS services occurs later in the process, it is anticipated that operational responsibilities along the I-10 Corridor are, or will be, supported by the application of ITS technologies including:

- Traffic Control and Management
- Commercial Vehicle Operations

- Incident Management
- Emergency Management
- Traveler Information
- Intermodal Facilities

2.2 Regional Stakeholders

The development of any ITS architecture is driven by a variety of different stakeholders and their roles/responsibilities in planning, operations, and maintenance of ITS facilities. To facilitate the development of the I-10 Corridor architecture, this section organizes a variety of stakeholders into functional groups as depicted in Table 3. All of the information regarding stakeholders and transportation inventory items was developed based on review of various regional and statewide architectures developed for states along the corridor. Additionally, the I-10 Corridor group representatives for each state provided valuable input via periodic meetings and teleconferences; state representatives were divided into two groups - gulf states (Texas, Louisiana, Alabama, Mississippi, and Florida), and border states (California, Arizona, New Mexico, and Texas).

The success of the ITS architecture depends on participation by a diverse set of stakeholders. Stakeholders in the I-10 Corridor are listed in Table 3, with a summary of their roles and responsibilities.

Many of the represented states already have statewide or regional ITS architectures developed which focus on an individual state or a major metropolitan area along the corridor; however, the purpose of this "corridor architecture" is to provide a perspective from the corridor level. The corridor architecture presented will serve as a framework for information exchange to facilitate corridor operations to the extent that only corridor-specific elements or operations most relevant to corridorwide operations will be considered in detail. For focused information about any specific state or region, please refer to the appropriate regional or statewide architecture document. To limit complexity, all the stakeholder agencies have been grouped under a generic stakeholder group consistent with their operational responsibilities. Such functional grouping will reduce the complexity of the architecture document making it easy to follow and use.

Table 3.

Stakeholder (or Group) Name	Role and Responsibility		
State Departments of Transportation	• Planning, construction, operations, and maintenance of the state		
(DOTs) District Offices	transportation elements (interstate facilities, primary and		
	secondary routes) in the portion of the corridor within each		
	state's boundaries		
	 Coordinating construction, operations, and maintenance with 		
	adjoining states		
	 Coordination with adjacent districts for traffic management 		
	operations and evacuation planning		
State Departments of Transportation (DOTs) Central Offices	• Operation of Statewide TMC, 511 system, etc.		
State DOT ITS Divisions	• Transportation data collection elements, data management, and distribution		
	• 511 info center management and operations		
	• Any and all transportation technology elements		
State DOT Planning Divisions	• Transportation infrastructure as well as technology deployment planning		
State DOT, Traffic Services, and	• Incident detection and response		
Traffic Engineering	 Reporting and logging incidents 		
	• TMC operations		
	• Signal systems operations, etc.		
State Motor Carrier Regulatory Agencies	• Communicate to other states regarding regulatory and enforcement matters		
Fit in Se	Communicate to federal regulatory agencies		
State Departments of Emergency	Regional and statewide evacuation planning and management		
Preparedness and Response	• Planning and managing emergency statewide response to disasters		
State Environment Agencies	Enforce environmental regulations		
	• Communicate with other agencies regarding compliance with and		
	violations of environmental regulations		
State Police Agencies	• Operation of state police centers in respective states, including		
	operation of computer-aided dispatch databases; collection of		
	incident and emergency detection data; and dispatch, response, and		
	status information related to the state police agency officers,		
	vehicles, and equipment		
University Transportation Research Centers	 Conducting research on transportation technology 		
	 Providing training and continuing education 		
	• Technology transfer and problem-solving services for system users		
Tourism and Travel Service	Communicate traffic and other information to service users		

Table 3.

Stakeholder (or Group) Name	Role and Responsibility		
Tourism and Travel Service	Communicate traffic and other information to service users		
Information Providers	Iransmit any appropriate information to local DOT district		
Toll Road Agencies and Operators	 Provide traffic and toll, construction, and Incident Information Communicate with state enforcement and other government agencies 		
Metropolitan Planning Organizations (MPOs)	 Regional coordination and prioritization of transportation and land use planning efforts 		
Port and Airport Districts	 Operation of field devices, parking management, emergency parking, and traffic management within facilities Coordination with district offices regarding freight, load, and other data 		
City/Local Traffic Management agencies	 Operation of local municipality field devices, including traffic signal systems and parking systems 		
Local Media	Communicate traffic and other information Transmit emergency information		
County/Parish and Local Police and Public Safety Agencies	Operation of local police, fire, and EMS offices and vehicles		
Archived Data Users	This stakeholder group includes all the local, county, and state agencies along the I-10 Corridor using the archived data from variety of transportation systems for analysis, planning, research, and deployments, etc. Some examples could include use of freeway traffic data for travel time and/or incident detection algorithms.		
City/County Emergency Management Services	This stakeholder group includes all major city/county emergency management services involved in providing incident response services along the corridor.		
City/County Police	City/county public safety agencies.		
City/County Public Safety Agencies	This stakeholder group includes city/county public safety agencies involved in public safety activities along the corridor.		
City/County Traffic Management Centers	This stakeholder group includes city/county TMCs involved in planning, monitoring, and operations of ITS elements along or in the immediate vicinity of the corridor.		
Commercial Vehicle Operators	This stakeholder group includes all private freight/commercial vehicle operators operating along the I-10 Corridor.		
County/City Department of Transportation	DOTs of major counties/cities along the corridor involved in planning and operations of transportation elements along and/or in the immediate vicinity of the corridors.		
HAZMAT Regulatory Agencies	This stakeholder group includes all the regulatory agencies involved in regulating and enforcement of hazardous material transportation.		
I-10 Corridor Task Force	This stakeholder group involves a joint committee represented by all states to ensure appropriate communications and coordination for smooth operations along the I-10 Corridor. This stakeholder group will oversee any elements designed to facilitate data/information.		

Table	3
1 adle	Э.

Stakeholder (or Group) Name	Role and Responsibility		
Media	This stakeholder group includes all local media resources involved in distribution of transportation (traffic, emergency, etc.) information to the drivers.		
Port Operations	This stakeholder group includes all the agencies involved in port operations along the corridor in applicable regions.		
Information Service Providers	This stakeholder group includes private sector traveler information service providers involved in traveler information distribution along the corridor.		
Private Towing or Wrecker Services	This stakeholder group involves private towing or wrecker services involved in incident response along the I-10 Corridor.		
Regional 511 Operators	This stakeholder group includes all the regional 511 operators in states along the corridor. The primary examples include one-call system in Florida or local lead 511 operators in states operating 511 or similar traveler information systems.		
Regional MPOs	This stakeholder group includes regional Metropolitan Planning Organizations involved in long- and short-range planning of the transportation facilities in the corridor. MPOs are also usually involved in maintaining and enforcing the regional ITS architectures.		
Travelers	This stakeholder group includes travelers using the I-10 freeway corridor.		
U.S. Customs and Border Protection Agencies	This stakeholder group represents the customs and border security efforts in the bordering states.		

2.3 Regional ITS Systems

As part of its prior work on the National I-10 Freight Corridor Study, the Wilbur Smith Associates team has developed a technical memorandum describing existing and planned ITS technologies along the corridor.

Existing, planned, and future systems in the I-10 Corridor were identified in the following categories:

- Travel and Traffic Management includes state and local traffic operations centers, traffic signal systems, detection systems, closed-circuit television (CCTV), fixed and portable changeable message signs, signal preemption, and other related technologies
- Public Transportation Management includes transit AVL, dial-a-ride automated dispatch, and kiosk transit information systems
- Electronic Payment includes toll tags (Smart Tag/E-ZPass) and electronic fare cards for transit and parking
- Commercial Vehicle Operations includes weighin-motion and on-board monitoring systems
- Emergency Management includes dispatch for police, fire, rescue, emergency operations/ management centers, and motorist assistance vehicles
- Information Management includes electronic data management and archiving systems
- Maintenance and Construction Operations includes maintenance vehicle tracking systems

2.4 Corridor ITS Inventory

The Corridor ITS inventory is presented in terms of:

- stakeholders
- physical elements
- ITS entities (subsystems/terminators)

The meaning of ITS subsystems and terminators is discussed in the following section of this document. The inventory is then listed, first sorted by stakeholder name and then by ITS entity.

2.4.1 Regional ITS Subsystems and Terminators

Each identified system or component in the I-10 ITS inventory was mapped to a subsystem or terminator in the National ITS Architecture. Subsystems and terminators are the "entities" that represent systems in ITS. Subsystems are the highest level building blocks of the physical architecture, and the National ITS Architecture groups them into four major classes:

- centers
- vehicles
- field
- travelers

Each of these major classes includes various subsystems that represent a set of transportation functions (or processes) that are likely to be collected together under one agency, jurisdiction, or location, and correspond to physical elements, such as traffic operations centers, traffic signals, vehicles, and so on. The 22 National ITS Architecture subsystems are shown as rectangles in Figure 2, within the four

previously listed major classes. The most recent subsystem to be added the National ITS Architecture was security monitoring, which was incorporated in the October 2003 architecture update.

Figure 2, also known as the "sausage diagram," is a standard interconnect diagram, showing the relationships of the various subsystems within the architecture. Communication functions between the subsystems are represented in the ovals. It should be noted that "wire line" communication refers to fixedpoint to fixed-point communications, which include not only twisted pair and fiber optic technologies, but also such wireless technologies as microwave and spread spectrum. National ITS Architecture, as well as a regional system. Examples of terminators include drivers, traffic operations personnel, information service providers, weather effects (snow, rain, fog), telecommunications systems, and government reporting systems, among others.

A customized interconnect diagram for the corridor is included.

2.4.2 Corridor ITS Inventory by Stakeholder

Each stakeholder is associated with one or more systems or elements (subsystems and terminators) that make up the transportation/ITS system/facility in the I-10 Corridor. Appendix A provides a detailed

Figure 2. National ITS Architecture, Physical Subsystem Interconnect Diagram

Terminators are the people, systems, other facilities, and environmental conditions outside of ITS that need to communicate or interface with ITS subsystems. They help to define the boundaries of the inventory report developed using Turbo Architecture software. It is important to note that only elements that affect corridorwide operations and contribute to corridor information exchange framework are considered under this architecture.

3. Corridor Transportation Needs

This section provides a summary of the transportation needs of the corridor as identified in discussions with the stakeholder representatives and by review of documents (regional as well as statewide ITS architectures, TIP/STIP planning documents, etc.) provided by the stakeholder group. This section focuses on ITS-related needs to provide input to subsequent activities leading to development of a regional ITS architecture. It focuses on summarizing the transportation needs that may be impacted or addressed to a degree by the application of ITS architecture requirements.

This section presents the transportation needs in two main headings:

- Identified ITS Needs
- Identification of Regional Market Packages

3.1 Identified Regional Needs

ITS needs for the I-10 Corridor have been identified through discussions and review of materials provided by the coalition stakeholder group:

- State/regional ITS architecture documents provided by all the coalition states
- National I-10 Freight Corridor Study Final Report, February 2002

As a result of stakeholder input and the review of materials listed earlier, ITS needs in the I-10 Corridor have been updated and are summarized and categorized into functional areas in Table 4. Needs shown in Table 4 are not listed in order of priority or ranking. These needs, along with existing and planned ITS systems and components, form the basis for the development of a corridor ITS architecture for the I-10 Corridor.

Table 4. I-10 Corridor Transportation/ITS Needs

Institutional Issues/Needs

- Need to identify keeper/manager of the corridor ITS architecture (IN-1)
- Need to develop and use a checklist for ITS project deployments by regional/state agencies to cover its relevance and compliance with the corridor architecture (IN-2)
- Need to coordinate between several regional/state agencies to resolve transportation issues (IN-3)
- Need to develop memoranda of understanding for sharing data and agency roles (IN-4)
- Need to develop common ITS planning objectives to better coordinate ITS efforts along the corridor (IN-5)
- Need improved coordination between traffic management agencies and emergency response agencies for evacuation, traffic data exchange, and traveler information purposes (IN-6)
- Need for a corridorwide information exchange clearinghouse for effective communication between all the corridor agencies; this may be a database called I-10 Gateway (IN-7)

Travel and Traffic Management Needs

- Need for a centralized traffic management system for any specific part of the corridor that is not covered by any of the existing regional or statewide TMC (TTM-1)
- Need for enhanced traffic detectors, environmental sensors, and expanded data collection network for traveler information, transportation planning, and operations along the corridor (TTM-2)
- Need for a corridorwide clearinghouse for transportation data management (traffic data, CCTV, CMS, incident management, etc.)(TTM-3)
- Need interconnected, coordinated signal systems and interagency signal system coordination for traffic control in major cities and towns (TTM-4)
- Need CCTV video coverage of I-10 Corridor, primary roadways (TTM-5)
- Need CCTV video coverage for major structures like bridges, tunnels, etc. along I-10 Corridor for safety and homeland security purposes (TTM-6)
- Need expanded use of CMS signs for traveler information on I-10, primary routes, and other strategic locations (TTM-7)
- Need for automated incident detection and management system for I-10 and primary routes (TTM-8)
- Need for incident response coordination (TTM-9)
- Need incident management interagency notification for traffic control (TTM-10)
- Need subscription e-mail alerts for incident/travel information (TTM-11)
- Need for congestion management strategies (TTM-12)

Public Transportation Management Needs

• Need for coordination with regional transit agencies to facilitate major evacuation efforts (PT-1)

Table 4. I-10 Corridor Transportation/ITS Needs

Commercial Vehicle Operations Needs

- Need overweight vehicle detection systems in CBD areas (CV-1)
- Need for weigh-in-motion systems along the corridor (CV-2)
- Need for electronic verification and regulatory check systems for commercial vehicles (CV-3)
- Need for electronic clearance systems at the border crossing sections and ports (CV- 4)
- Need for automated message alerts about incidents along the corridor and potential impacts on commercial vehicle travel (CV-5)
- Need for corridorwide electronic toll payment solution (CV-6)

Emergency Management Needs

- Need for communications infrastructure across state jurisdictions for emergency response coordination (EM-1)
- Need for Wi-Fi spots along I-10 for emergency response data transfer (EM-2)
- Need for emergency vehicles preemption system in CBD areas (EM-3)
- Need interoperable communications between local police/fire/rescue along the corridor (EM-4)
- Need for coordination between regional emergency response agencies (EM-5)
- Need for evacuation plans for separate stretches of the corridor (EM-6)

Information Management Needs

- Need for corridorwide clearinghouse for transportation data management (traffic data, CCTV, CMS, incident management, etc.) (IM-1)
- Need for seamless information exchange across the corridor (IM-2)

Maintenance and Construction Operations Needs

- Need media coverage of road closure plans (MC-1)
- Need real time vehicle tracking and conditions reporting systems (MC-2)
- Need smart ITS work zones for long-term construction projects (MC-3)

3.2 Identification of Regional Market Packages

Market packages represent slices of the physical architecture that address specific services like surface street control. A market package collects together several different subsystems, equipment packages, terminators, and architecture flows that provide the desired service. The National ITS Architecture provides a menu of 85 different market packages bundled in eight user service bundles; Table 5 depicts all the market packages.

Based on the ITS needs and the existing/planned ITS systems, the following market packages were selected for the I-10 Corridor ITS architecture:

MP ID	Market Package Name	MP ID	Market Package Name	
Archived Data Management		Traffic Ma	Traffic Management	
AD1	ITS Data Mart	ATMS01	Network Surveillance	
AD2	ITS Data Warehouse	ATMS02	Probe Surveillance •	
AD3 ITS Virtual Data Warehouse		ATMS03	Surface Street Control	
Public Tra	ansportation	ATMS04	Freeway Control	
APTS1	Transit Vehicle Tracking	ATMS05	HOV Lane Management •	
APTS2	Transit Fixed-Route Operations	ATMS06	Traffic Information Dissemination	
APTS3	Demand Response Transit Operations	• ATMS07	Regional Traffic Control	
APTS4	Transit Passenger and Fare Management	ATMS08	Traffic Incident Management System	
APTS5	Transit Security	ATMS09	Traffic Forecast and Demand Management	
APTS6	Transit Maintenance	ATMS10	Electronic Toll Collection	
APTS7	Multimodal Coordination	ATMS11	Emissions Monitoring and Management	
APTS8	Transit Traveler Information	ATMS12	Virtual TMC and Smart Probe Data	
Traveler I	nformation	ATMS13	Standard Railroad Grade Crossing	
ATIS1	Broadcast Traveler Information	ATMS14	Advanced Railroad Grade Crossing	
ATIS2	Interactive Traveler Information	ATMS15	Railroad Operations Coordination	
ATIS3	Autonomous Route Guidance	ATMS16	Parking Facility Management	
ATIS4	Dynamic Route Guidance	ATMS17	Regional Parking Management	
ATIS5	ISP-Based Route Guidance	ATMS18	Reversible Lane Management	
ATIS6	Integrated Transportation Management/Route Guidance	ATMS19	Speed Monitoring	
ATIS7	Yellow Pages and Reservation	ATMS20	Drawbridge Management	
ATIS8	Dynamic Ridesharing	ATMS21	Roadway Closure Management	
ATIS9	In-Vehicle Signing			

Table 5. Selected I-10 Corridor ITS Market Packages

Vehicle Safety		Emergence	Emergency Management	
AVSS01- AVSS11	None Selected for Corridor Architecture	EM01	Emergency Call-Taking and Dispatch	
		EM02	Emergency Routing	
Commerc	ial Vehicle Operations	EM03	Mayday Support	
CVO01	Fleet Administration	• EM04	Roadway Service Patrols	
CVO02	Freight Administration	• EM05	Transportation Infrastructure Protection	
CVO03	Electronic Clearance	• EM06	Wide - Area Alert •	
CVO04	CV Administrative Processes	• EM07	Early Warning System •	
CVO05	International Border Electronic Clearance	• EM08	Disaster Response and Recovery	
CVO06	Weigh-In - Motion	• EM09	Evacuation and Reentry Management	
CVO07	Roadside CVO Safety	• EM10	Disaster Traveler Information	
CVO08	On -Board CVO and Freight Safety and Security	• Maintena Managem	Maintenance and Construction Management	
CVO09	CVO Fleet Maintenance	• MC01	Maintenance and Construction Vehicle and Equipment Tracking	
CVO10	HAZMAT Management	• MC02	Maintenance and Construction Vehicle Maintenance	
CVO11	Roadside HAZMAT Security Detection and Mitigation	• MC03	Road Weather Data Collection	
CVO12	CV Driver Security Authentication	• MC04	Weather Information Processing and Distribution	
CVO13	Freight Assignment Tracking	• MC05	Roadway Automated Treatment	
		MC06	Winter Maintenance	
		MC07	Roadway Maintenance and Construction	
		MC08	Work Zone Management •	
		MC09	Work Zone Safety Monitoring	
		MC10	Maintenance and Construction Activity Coordination	

Table 5. Selected I-10 Corridor ITS Market Packages

4. Regional Architecture

This section summarizes the tasks undertaken to develop the I-10 Corridor ITS architecture. A strawman architecture was developed and presented to the stakeholder group in a meeting to arrive at the material presented in this document. The architecture was reviewed in detail for all regional ITS elements, including interconnect diagrams and information flows, which are presented in this section.

This section is presented in three main headings:

- Architecture Inputs
- Architecture Description
- Architecture Output

4.1 Architecture Inputs

Inputs to the development of the I-10 Corridor ITS architecture include representative ITS market packages, regional stakeholders, ITS inventory elements and assets, as well as descriptions of each of these inputs. All of this information was described in detail in chapters 2 and 3 of this document. Turbo Architecture was used to compile the inputs and develop the I-10 Corridor regional ITS architecture.

The regional transportation needs have been mapped to the national ITS market packages. The I-10 Corridor regional market packages that were selected and used as input to the architecture are shown in Table 5.

Input to the ITS architecture for the I-10 Corridor includes:

- 27 major stakeholders or stakeholders groups
- 64 market packages, including:

- advanced public transportation systems: one package
- advanced traffic management systems: 21 packages
- advanced traveler information systems: six packages
- advanced vehicle safety systems: zero packages
- archived data management: three packages
- commercial vehicle operations: 13 packages
- emergency management: 10 packages
- maintenance and construction: 10 packages

4.2 Architecture Description

The identification of stakeholders, existing inventory/needs, and selected market packages represent major inputs to the ITS architecture development process. This information was entered into Turbo Architecture version 3.1 to facilitate subsequent steps in the development process. The National ITS Architecture and Turbo Architecture use a variety of abbreviations and terms to describe the many components and relationships represented by the architecture.

The I-10 Corridor ITS architecture may be represented by a series of interconnect diagrams, which show existing and planned connections between the various physical elements of the ITS architecture. These interconnect diagrams were presented to the stakeholder group for review and discussion to ensure accuracy.

The ITS architecture framework for the I-10 Corridor is shown in Figure 3. Those elements in Figure 3 that are highlighted apply to the I-10 Corridor.

Figure 3. I-10 Corridor ITS Architecture Framework

4.3 Architecture Output

As mentioned in Section 4.2, the I-10 Corridor architecture is presented, in addition to this document, in a series of interconnect and information flow diagrams generated by Turbo Architecture application. Appendices B and C present the interconnect and information flow diagrams for the I-10 Corridor.

5. Operational Concept

This section describes the concept of operations for the existing and planned ITS subsystems within the I-10 Corridor within a five-year timeframe. The concept of operations is a description of the roles and responsibilities of the stakeholder groups as they relate to the operation of the systems that exist or are being proposed. This operational concept provides an executive summary type perspective of the way the I-10 Corridor ITS systems will work together, and it identifies the roles and assignments for each of the services that the intelligent transportation system will provide. It is important to understand that this is a conceptual framework. Detailed planning will happen at the project planning level. Having such a conceptual framework will ensure necessary coordination for existing as well as future ITS deployments and will maximize their leverage from a corridor perspective.

5.1 Broad Operational Concept

The goal of the concept of operations is to deliver seamless communication throughout the I-10 Corridor, irrespective of jurisdictional boundaries. Although a daunting challenge (given the length and complexity of the corridor), end users expect services to be available regardless of jurisdiction or location.

Comprehensive planning and coordination along the entire corridor is the key to an efficient transportation system along this vast corridor. Corridorwide information exchange will ensure maximum leverage from existing as well as future ITS deployments within the corridor, the operational concept proposes information exchange on two separate levels - one at the corridor level through a clearinghouse or a "corridor gateway," and secondly at the adjacent states level through state-to-state coordination. Such a 2layered approach will ensure that adjacent states coordinate and cooperate more closely for day-to-day operations as well as through emergencies, and any incident or system information that has corridorwide relevance will be communicated to the entire corridor through a variety of ITS systems in operation along the corridor. Figure 4 represents the proposed broad concept of operations for the ITS communications and information exchange along the I-10 Corridor.

The operational responsibilities that will be supported by existing and planned ITS subsystems along the corridor are as follows:

- Traffic Control and Management
- Incident Management
- Emergency Management
- Intermodal Facilities
- Traveler Information

A key element for the corridor operational concept is the coordination between statewide traffic management centers (TMCs). This will support several of the other ITS needs such as field devices, including CMS, CCTV, traffic signal interconnection, and highway advisory radio (HAR). Establishment of an incident management committee for special events and no-notice events is another key element. Creating interoperability among systems and subsystems will tend to reduce the level of capital investment required to provide high quality ITS services to stakeholders and the traveling public. To the extent that increasing levels of interoperability are achieved, flexibility in roles and responsibilities can

also result. This concept of operations focuses on the basic, desirable roles and responsibilities. Numerous variations can and likely will emerge in the future as subsystems and enhancements are deployed. The concept of operations will be dynamically adjusted, as needed and determined by the stakeholders, to reflect the growth and evolution of the corridor ITS systems.

5.2 Roles and Responsibilities

Under normal and event-driven operating conditions, a number of agencies will be required to coordinate closely to perform their operational responsibilities. The key agencies (or groups) that have a major role or responsibility during operations are listed in Table 3 of this document. While it is recognized that other

Key features include:

- a corridorwide information gateway
- the gateway is the clearinghouse hub of transportation information and is a key asset in emergency management as well as incident detection and response along at a corridor level
- the flow of data through the gateway supports all of the transportation operational information gathered by a variety of ITS systems along the corridor

agencies may be involved during a scenario in addition to the ones listed in Table 3, it is not expected that they will play as critical a role in operations.

5.3 Roles and Responsibilities by Functional Area

In considering the operational roles, the stakeholders are grouped into the following functional areas of responsibilities and roles:

- Traffic Control and Management
- Incident Management
- Emergency Management
- Intermodal Facilities
- Traveler Information

5.3.1 Traffic Control and Management

Travel and traffic management addresses a wide swath of activities associated with monitoring traffic flows, identifying flow abnormalities, and detecting (as well as verifying to the extent technologically possible) incidents. Normal operational procedures include collection and archiving of traffic data, management of pre-planned events, ITS device control, and exchanging information with partner stakeholders.

The efforts are broken into two distinct components of the roadway network: surface streets and access controlled routes.

Surface Street Management

This is particularly important where the I-10 Corridor travels through major metropolitan areas. A variety of local city/county agencies monitor traffic flow for local corridors and signalized control systems. These agencies are responsible for ensuring that surface street operations do not impede the freeway operations along the I-10 Corridor during normal operations as well as major incidents, special events, emergencies, and long-term construction projects.

Freeway Management

Eight different state DOTs (or statewide TMCs) are primarily responsible for monitoring real-time traffic flow conditions for different stretches of the I-10 Corridor through their states, providing road network and incident conditions to the 511 system, information service providers, and local traffic operations. Many of the DOTs operate one or more changeable message signs, portable highway advisory radio, weather/visibility stations, and a variety of other freeway operations-related ITS field components.

There will be a need for significant data or information exchange between these TMCs to ensure efficiency of the I-10 Corridor operations.

5.3.2 Incident Management

The following agencies coordinate incident management and emergency response activities for local and freeway situations:

- Local Public Safety Agencies
- Local Traffic Operations
- State DOTs
- Local and Statewide Emergency Management Agencies
- Emergency Operations Centers
- State and Local Police Agencies

Public safety agencies are responsible for responding to incidents and notifying other agencies including traffic operations agencies. Traffic operations agencies along the corridor will provide each other and public safety agencies with road network conditions, adjust signal timings where appropriate, and alert motorists through field devices. Public safety personnel will provide routine status updates on incident clearing activities to traffic operations agencies where the information continues to be disseminated to the traveling public. There will be a need for corridorwide information exchange to ensure that any major incidences (emergencies and evacuations) are conveyed to the users all through the entire I-10 Corridor. It may be beneficial to form a corridorwide incident management committee to ensure more focused coordination for incident management purposes.

5.3.3 Emergency Management

The following agencies/divisions receive and provide information on incidents to the I-10 Corridor ITS gateway:

- Local Public Safety Agencies
- Local E-911 Call Centers
- State Emergency Operations Centers (EOC)
- State District Offices
- District Residency Offices
- State Police Agencies
- Local Police Agencies

Public safety will provide information on incidents to surrounding state districts through computer aided dispatch interface(s). The EOCs orchestrate wide-area coordination efforts involving multiple emergency response organizations and traffic management personnel. Such coordination would involve adjacent state DOTs as well as I-10 Corridor gateway for major emergencies.

5.3.4 Intermodal Facilities

This section is relevant to all other modes of travel along the I-10 Corridor and its interface with the transportation system. Intermodal coordination relates to ports, airports, railway centers, and transit stations. Transit is particularly important in case of evacuation planning. Commercial vehicle operations (CVO) along the corridor also form an important part of the coordination element to ensure a seamless transportation system along the corridor.

5.3.5 Traveler Information

The purpose of this functional area is to provide travelers with real time roadway network status and incident/emergency information so that travelers can make informed decisions as to routes and modes of travel. Two principle systems are focused on traveler information:

- State Operations Information Systems
- 511 Traveler Information Systems

A variety of DOT elements have read/write access to the state operations information databases, with write privileges being limited to the agency's areas of responsibilities. Many other non-DOT agencies and organizations have read-only access to such systems. The following agencies generate and share information to enable educated decisions for all modes of transportation:

- Transit Providers
- Information Service Provider
- Media
- Municipality/County
- Airport
- Convention Center/Visitors Bureau
- DOT Traffic Management Centers

There may be a case for an I-10 Corridor integrated traveler information web portal. These agencies would be responsible for providing the road network

conditions, transit schedule information, fare/toll information, special events, airport information/ schedules, construction/maintenance/lane closure activities, incidents, and other travel-related information.

5.4 Operational Scenarios

One approach to describing the concept of operations is to present specific examples of operational scenarios for different broad categories of operational applications. The operational scenarios can be used to describe and define the stakeholders' general roles together with the applicable resources that are needed to provide these resources.

5.4.1 Operational Scenario 1: I-10 Corridor Major Incident between Baton Rouge, Louisiana and Houston, Texas

The first operational scenario describes how ITS technologies and stakeholders would cooperatively address an incident along the I-10 Corridor; for example, one which involves a major accident involving a hazardous material spill that closes multiple lanes for an extended duration somewhere near the state line between Texas and Louisiana. The scenario will require state-to-state coordination, with both LA DOTD and TxDOT as well as information update to travelers and commercial vehicle operators along the entire I-10 Corridor. In this scenario the I-10 Corridor is equipped with some ITS devices that include DMS signs. It is assumed that connections between TxDOT, LADOTD, I-10 Corridor ITS gateway, major cities along subject stretch of I-10 Corridor, and other key public safety agencies are established. As information is received by statewide or district TMCs, it is assimilated

and packaged so it can be disseminated to the public with HAR, media, and the statewide 511 system and I-10 ITS Corridor gateway applications.

Scenario Details: During an early weekday winter morning, a tanker truck eastbound on I-10 carrying liquid dimethylamine loses control and jack knifes. The truck slides into the median, overturns, and ends up in the westbound lanes, with a fractured tank that begins to spill dimethylamine. As vehicles attempt to avoid the tanker, there is a chain reaction of vehicle accidents involving 20 passenger cars on eastbound as well as westbound lanes. The truck cab has trapped the driver and when the cab becomes engulfed in flames, the driver perishes. There are at least 10 serious injuries and three entrapments in the vehicle pileup. Both the eastbound and westbound lanes are fully blocked and the hazardous material spill is growing. Motorists attempting to assist feel the effects of the hazardous material and feel nauseous, teary eyed, and dizzy. Motorists use cell phones to contact 911 and truckers broadcast the accident conditions over their CB radios.

Regional/Corridor Scenario Operations: The first stage of this incident is response and assessment of the incident. Emergency 911 initially dispatches LSP, TxDPS, and local fire and EMS. TxDOT and/or LA DOTD district maintenance crews are summoned to assist with traffic control as vehicle backups along I-10 grow. As emergency personnel travel to the scene they attempt to gain an understanding of the conditions. LSP arrives first and request motorists to move at least 1,000 feet from the scene. Local police assist with detours to reroute traffic and move motorists away from the scene. Fire professionals arrive second and approach with caution to extinguish the fire. The

local fire chief employs the incident command system (ICS) as other fire personnel assess and identify the hazardous material. The fire chief requests help from DOTs and hazmat officials to request assistance to contain the material. EMS establishes an on-site triage for accident victims and those affected by the chemical spill. Media reports the incident as breaking news on the morning news. Statewide 511 for Texas as well as Louisiana has received the accident information and downloads the information to travelers. The TxDOT and LA DOTD traffic management centers feed the incident information and real time updates into the I-10 ITS Corridor gateway and provide live video on the I-10 Corridor web portal. Thus, all the users along the I-10 Corridor are aware of this major incident and subsequent closing of I-10 for a considerable duration.

DOT maintenance crews use portable and permanent DMS to notify motorists of the incident. DOTs contact the cities of Baton Rouge, Houston, and Lake Charles to request assistance to help divert motorists seeking to use I-10 in that stretch and set up alternate routing. Understanding the severity of the situation, DOT requests a long-term commitment from the local municipalities to assist with traffic control and alternate routing messaging.

The second stage of this scenario is recovery and longterm impacts. The incident and scene have been stabilized in terms of injuries and containment of the hazardous material. Alternate routing has been established and traffic control has cleared the scene of traffic. LSP and TxDPS conduct their investigation. Hazardous material crews work to clean up the scene. Portable DMS display messages route motorists along alternative routes. LA DOTD and TxDOT districts coordinate the traffic control effort, 511 messaging, real time updates in to I-10 Corridor gateway, and media information.

5.4.2 Operational Scenario 2: Major Evacuation in Mobile, Alabama

The second operational scenario describes how ITS technologies and stakeholders would cooperatively address a hurricane emergency event in Mobile, Alabama that would require an evacuation of the surrounding area. The scenario will require state-tostate coordination, with both Florida and Mississippi. The state of Alabama has a specific evacuation plan. The plan involves an emergency planning zone (EPZ) and, should an emergency occur, the radio station and TV channels will inform residents of specific locations and locations designated as evacuation assembly centers to house evacuees. Emergency portable signs located within the 10-mile EPZ are a primary means of alerting the public. It is assumed that connections between the Mississippi DOT, city of Mobile, cities along I-10, 511, state EOC, and other key public safety agencies are established. As information is received by Alabama DOT, it is assimilated and packaged so it can be disseminated to the public with HAR, I-10 Corridor ITS gateway, media, and the statewide 511 systems.

Scenario Details: On a summer day, a category 5 hurricane lands ashore near the city of Mobile, Alabama. The local agencies are caught a little bit off guard as the earlier prediction of landfall was at a distant location and was revised in the last six to eight hours. The media is notifying local residents within the EPZ that the hurricane is coming ashore and they need to evacuate immediately.

Regional Scenario Operations: Preparedness and readiness in hurricane planning has trained the public agency staff on the specific efforts to follow. Unfortunately, short notice on actual location of landfall is threatening to take over the situation and there are already long backups on I-10. However, through their involvement with the incident management committee, state, local, and state police and transportation agencies respond immediately to assist in the evacuation activities.

DOTs (Florida, Alabama, and Mississippi) start coordinating and communicating for reversible lane operations plan along I-10 for certain stretches to support evacuation. The Mississippi DOT and Florida DOT start distributing messages via 511, DMS, I-10 Corridor gateway applications, and media informing travelers not to proceed toward Alabama and to expect potential rerouting to support reversible lanes and reverse direction flows to assist evacuation. Thus, all the users along the I-10 Corridor are aware of this major incident and subsequent closing of I-10 for a considerable duration. Several major cities and town agencies are supporting FDOT and MDOT activities in allowing reverse flow to assist in efficient evacuation travel in one specific direction.

Local and state DOTs in Alabama contact local transit agencies to dispatch buses for mass evacuations. Major cities surrounding I-10 provide favorable signal timing plans to get the traffic off I-10 efficiently. The local media, both radio and television, use the emergency broadcast systems to alert residents in the Mobile area of the emergency and need for immediate evacuation.

5.4.3 Operational Scenario 3: Severe Desert Storm in Arizona

The third operational scenario describes how ITS technologies and stakeholders would cooperatively address special event management owing to a severe sand storm and related incidents along I-10 between Phoenix and Tucson in Arizona. This would involve traffic management along I-10 and all adjacent major roadways. This event requires coordination between Arizona DOT, local DOTs for Phoenix and Tucson, Caltrans, and New Mexico DOT.

Scenario Details: A severe desert/sand storm between Phoenix and Tucson area impeded I-10 operations and created a severe backup along I-10. High winds, poor highway visibility, and vehicle accidents on I-10 caused a huge traffic backup in the eastbound and westbound lanes. Stormy conditions created chain reaction-type collisions along I-10; 42 vehicles were involved with several injuries and emergency response needs. The I-10 Corridor was closed for several hours in both the eastbound and westbound directions

Regional Scenario Operations: The first stage of this incident is response and assessment of the incident. Emergency 911 initially dispatches local police and local fire and EMS. Arizona DOT district maintenance crews are summoned to assist with traffic control as vehicle backups grow along I-10. As emergency personnel travel to the scene they attempt to gain an understanding of the conditions. Arizona state police arrive first and request motorists to move at least 1,000 feet from the scene. Local police assist with detours to reroute traffic and move motorists away from the scene.

Arizona DOT coordinates with the cities of Phoenix and Tucson to assist with the traffic management and rerouting of I-10 traffic. The DOT also communicates the incident information and subsequent closure information to Caltrans and New Mexico DOT. Caltrans and New Mexico DOT start distributing the information through 511 and DMS signs to the travelers. Arizona DOT also feeds the information into I-10 Corridor gateway and provides real time video of the situation. Media reports the incident as breaking news on the news. Thus, all the users along the I-10 Corridor are aware of this major incident and subsequent closing of I-10 for a considerable duration.

Arizona DOT maintenance crews use portable and permanent DMS to notify motorists of the incident. DOTs contact the cities of Phoenix and Tucson to request assistance to help divert motorists seeking to use I-10 in that stretch and set up alternate routing.

The second stage of this scenario is recovery and longterm impacts. The incident and scene have been stabilized in terms of injuries. Alternate routing has been established and traffic control has cleared the scene of traffic. Portable DMS display messages route motorists along alternative routes. Arizona DOT districts coordinate the traffic control effort, 511 messaging, real time updates in to I-10 Corridor gateway, and media information.

5.4.4 Operational Scenario 4: Major Construction Activity between Phoenix, Arizona and Palm Springs, California

The fourth operational scenario describes how ITS technologies and stakeholders would cooperatively

address a planned road construction project along the I-10 Corridor.

Scenario Details: This is a widening project that will occur over a two-year period, requiring lane closures and temporary shifts in traffic flows. Multiple phases of construction are required to develop the additional lanes and modify major interchanges. This scenario occurs with limited ITS field devices located along I-10; however, the project will include new DMS, RWIS, permanent count stations, and CCTV at major interchanges. It is assumed that connections between towns, counties, Arizona DOT and Caltrans, and other key public safety entities have been established. The existing and limited subsystems and field ITS elements are monitored by the DOTs. Information gathered at the California and Arizona TMCs is assimilated and "packaged" so that it can be effectively disseminated to the public through limited DMS sites, regional HAR, and the statewide 511 system.

Regional Scenario Operations: The first phase of the project includes implementation of a maintenance of traffic plan that includes deployment of temporary ITS field devices which includes portable CMS, portable detection stations, portable HAR, and installation of CCTV at existing interchanges. Maintenance of traffic plans have been developed for I-10 and both the DOTs are working with several local agencies for rerouting of the I-10 traffic and providing alternative travel modes. The local media has been included in the project to use as a source of information sharing to the community. Media has been briefed on the sequence and schedule for construction and will be provided weekly updates of progress and changes. Strategies for use of local transit and park-and-ride facilities is part of the traffic management plan. The overall plan for the widening

and maintenance of traffic through the entire period is updated through the I-10 Corridor gateway; thus, all the potential users, especially commercial operators, are aware of the project activities and relevant change of travel patterns.

During the second phase of the project, construction is underway. Lane closures and the use of temporary roadways are typical. Travel and construction information is disseminated through several devices. Portable DMS provide information along I-10 and other key roadways. Portable HAR broadcast construction and road closure-related information. Media sources receive information from the contractor through the DOTs regarding weekly construction activities. The media use television, radio, and the newspaper to disseminate the information to the public. Both Arizona DOT and Caltrans assimilate and disseminate information on the statewide 511 systems and DOT web sites. State DOT districts assist with construction activities by field adjustments of transportation elements as necessary. Through the use of detection systems, the TMCs monitor traffic and provide alternate routing information via the portable DMS and HAR. Local transit providers transport people from the park-and-ride lot to preidentified locations in the nearby cities. Construction zones are monitored by TMCs for incidents with response measures predetermined by DOT, state police, and local area law enforcement and emergency responders.

As the new and permanent ITS field devices are installed, the new equipment is integrated with the existing baseline equipment at the California and Arizona state TMCs. The new field devices are used to augment the portable and temporary equipment, until the permanent equipment completely replaces the temporary devices.

5.5 I-10 Corridor Agreements

This section has identified several agency interfaces, information exchanges, and integration strategies that would be needed to provide the ITS services and systems identified by the stakeholders in the I-10 Corridor for the I-10 Corridor gateway. Interfaces and data flows among public and private entities along the corridor will require agreements among agencies that establish parameters for sharing agency information to support traffic management, incident management, provide traveler information, and other functions identified in the operational concept.

With the implementation of I-10 Corridor gateway and other ITS technologies, integrating systems from one or more agencies, the anticipated level of information exchange identified in the architecture, it is likely that formal agreements will be needed. These agreements, while perhaps not all requiring a financial commitment from agencies in the corridor, should outline specific roles, responsibilities, data exchanges, levels of authority, and other facets of corridor operations. Some agreements will also outline specific funding responsibilities, where appropriate and applicable.

Table 6 provides a list of potential agreements for the I-10 Corridor based on the interfaces identified in the corridor architecture. It is important to note that as ITS services and systems are implemented along the corridor, part of the planning and review process for those projects should include a review of potential agreements that would be needed for implementation or operations.

Data Sharing and	Future	This agreement would	These agreements are	
Usage for I-10		define the parameters,	typically zero-dollar	
Corridor ITS		guidelines, and policies	agreements, in that there is	
Gateway (Public)		for inter-and intra-agency	no charge among agencies	
State DOTs and		ITS data sharing required	for the actual data, although	
Public Agencies		for I-10 Corridor gateway.	there might be some cost	
within the Corridor		This data sharing would	incurred for infrastructure,	
		support corridor activites	systems, or fiber to enable	
		related to traffic	communications between	
		management, incident	agencies.	
		management, traveler		
		information, and other		
		functions. Data would also		
		include video images from		
		CCTV cameras. The terms		
		of this agreement should		
		generally address such		
		items as:		
		• Types of data		
		information to be shared		
		 Repository for 		
		information (i.e.,		
		Regional Traveler		
		Information Database/		
		Clearinghouse)		
		 How the information 		
		will be used (traffic		
		incident management,		
		displayed on web site for		
		travel information,		
		distributed to private		
		media, etc.)		
		• Parameters for data		
		format, quality, security		

Table 6. Potential Agreements for the I-10 Corridor

Resource	Future	This agreement would	These agreements can be
Sharing (Public-		define the parameters,	mutual-aid agreements,
Public)		guidelines, and policies	where funding is jointly
Between Public		for establishing a corridor	derived, or they can identify
Agencies		ITS - related	infrastructure to be
		communication backbone	completed by each respective
		(e.g., fiber optics) from	agency with their own
		municipal/county systems	funding as part of a regional
		as well as the DOT TMC.	collaboration.
Data Sharing	Existing	This agreement would	These agreements can be
and Usage	Statewide	define the parameters,	zero - dollar agreements,
(Public-Private)	Initiative	guidelines, and policies	although some agencies have
Public Agencies		for private media use of	stipulated identifying the
and Private		regional ITS - related	information, public service
Media/Information		information from I-10	announcements by the
Service Providers		Corridor gateway. This	media, or other requirements
		type of agreement is	as a term of use. The private
		recommended between	media entity is typically
		public agencies (data	responsible for paying any
		provider) and the media	necessary costs for access.
		(data user) to define terms	These agreements also
		of use for broadcasting	typically include a sunset
		public - agency	clause to allow the agency to
		information regarding	periodically review the
		traffic conditions,	agreement and make any
		closures, restrictions, as	modifications prior to
		well as video images.	renewal.

Table 6. Potential Agreements for the I-10 Corridor

Shared Video	Future	This agreement would enable	These agreements are
Monitoring		shared video monitoring of	typically zero - dollar
(Public-Private)		multiple agencies' CCTV cameras	agreements, in that there is
State DOTs and		by public safety and emergency	no charge among agencies
Local Agencies		services along the corridor for	for the actual data, although
1958		incident management purposes.	there might be some cost
		This agreement would define	incurred for infrastructure,
		the parameters and policies	systems, or fiber to enable
		for public safety agencies to	communications between
		access video images via the TMC	agencies, particularly with
		video switch. It is recommended	the high bandwidth required
		that the agreement include any	for transmitting live video
		state DOT policies relating to	images.
		video images (including archiving,	
		privacy, disclaimers, use of video,	
		and redistribution) as well as	
		processes for agency requests for	
		specific views. Shared video	
		monitoring does not address	
		shared use or shared control of	
2		video equipment functions.	
Architecture	Future	This agreement would define the	
Maintenance		parameters, guidelines, and	
		policies for maintenance of the	
		corridor architecture.	
Pooled Funding	Future	This agreement would define	
8	and a construction of the	the parameters, guidelines, and	
		policies for interagency and	
		interstate funding initiatives to	
		encompass wide-area ITS	
		initiatives along the corridor.	

Table 6. Potential Agreements for the I-10 Corridor

6. Architecture Maintenance Plan

This section discusses the proposed maintenance plan for the I-10 Corridor ITS architecture.

FHWA's Final Rule on ITS Architecture and Standards (23 CFR Part 940) requires development of an architecture maintenance plan. Paragraph 940.9(f) states that:

> "The agencies and other stakeholders participating in the development of the regional ITS architecture shall develop and implement procedures and responsibilities for maintaining it, as needs evolve within the region."

In January 2004, FHWA issued guidance¹ on what should be contained in an architecture maintenance plan, in order to be compliant with FHWA requirements. The white paper on this subject is available at http://ops.fhwa.dot.gov/its_arch_imp/guidance.htm. The maintenance plan for the I-10 Corridor ITS architecture is based on the guidelines provided by FHWA's white paper.

This report provides some background on the need for architecture maintenance and addresses key issues under the following headings:

- Why maintain a corridor ITS architecture?
- Who will maintain the architecture?
- When will the architecture be updated?
- What will be maintained?
- How will the architecture be maintained?

6.1 Why Maintain a Corridor ITS Architecture?

A regional ITS architecture is "a regional framework for ensuring institutional agreement and technical integration for the implementation of ITS projects or groups of projects." Paragraph 940.9(a) states that:

> "A regional ITS architecture shall be developed to guide the development of ITS projects and programs and be consistent with ITS strategies and projects contained in applicable transportation plans. The National ITS Architecture shall be used as a resource in the development of the regional ITS architecture. The regional ITS architecture shall be on a scale commensurate with the scope of ITS investment in the region. Provision should be made to include participation from the following agencies, as appropriate, in the development of the regional ITS architecture: highway agencies; public safety agencies (e.g., police, fire, emergency/medical); transit operators; federal lands agencies; state motor carrier agencies; and other operating agencies necessary to fully address regional ITS integration."

As ITS projects are implemented, the regional ITS architecture will need to be updated to reflect new ITS priorities and strategies that emerge through the transportation planning process, to account for expansion in ITS scope, and to allow for the evolution and incorporation of new ideas. The goal of the maintenance plan is to guide controlled updates to the regional ITS architecture baseline so that it continues

¹ FHWA-HOP-04-004, Regional ITS Architecture Maintenance White Paper, prepared by the National ITS Architecture Team, January 31, 2004.

to accurately reflect the region's existing ITS capabilities and future plans.

6.1.1 Events Requiring Architecture Updates

The regional ITS architecture is not static. It must change as plans change, ITS projects are implemented, and the ITS needs and services evolve in the region. The regional ITS architecture must be maintained so it continues to reflect the current and planned ITS systems, interconnections, and other aspects of architecture. The following list includes many of the events that may cause change to a regional ITS architecture:

Changes in Regional Needs: Regional ITS architectures are created to support transportation planning in addressing regional needs. Over time these needs can change and the corresponding aspects of the regional ITS architecture that address these needs may need to be updated. These changes in needs should be expressed in updates to planning documents such as the regional transportation plan.

New stakeholders: New stakeholders become active in ITS and the regional ITS architecture should be updated to reflect their place in the regional view of ITS elements, interfaces, and information flows. New stakeholders might represent new organizations that were not in place during the original development of the regional ITS architecture.

Changes in scope of services considered: The range of services considered by the regional ITS architecture expands. This might happen because the National ITS Architecture has been expanded and updated to include new user services or to better define how existing elements satisfy the user services. The National ITS Architecture may have expanded to include a user service that has been discussed in a region, but not in the regional ITS architecture, or was included in only a very cursory manner. Changes in the National ITS Architecture are not of themselves a reason to update a regional ITS architecture, but a region may want to consider any new services in the context of their regional needs.

Changes in stakeholder or element names: An agency's name or the name used to describe their element(s) undergoes change. Transportation agencies occasionally merge, split, or rename themselves. In addition, element names may evolve as projects are defined. The regional ITS architecture should be updated to use the currently correct names for both stakeholders and elements.

Changes in other architectures: A regional ITS architecture covers not only elements and interfaces within a region, but also interfaces to elements in adjoining regions. Changes in the regional ITS architecture in one region may necessitate changes in the architecture in an adjoining region to maintain consistency between the two. Architectures may also overlap (e.g., a statewide ITS architecture and a regional ITS architecture for a region within the state) and a change in one might necessitate a change in the other.

There are several changes relating to project definition that will cause the need for updates to the regional ITS architecture:

Changes due to project definition or

implementation: When actually defined or implemented, a project may add, subtract, or modify elements, interfaces, or information flows from the

regional ITS architecture. Because the regional ITS architecture is meant to describe the current and future regional implementations of ITS, it must be updated to correctly reflect how the developed projects integrate into the region.

Changes due to project addition/deletion:

Occasionally a project will be added or deleted through the planning process or through project delivery and some aspects of the regional ITS architecture that are associated with the project may be expanded, changed, or removed.

Changes in project priority: Due to funding constraints, or other considerations, the planned project sequencing may change. Delaying a project may have a ripple effect on other projects that depend on it. Raising the priority for a project's implementation may impact other projects that are related to it.

6.2 Who Will Maintain the Architecture?

To maintain a consensus regional ITS architecture, ideally all stakeholders should participate in the process. In practice, typically, one or two agencies take the lead responsibility to maintain the regional ITS architecture.

It is important that the responsibility for architecture maintenance should not be delegated to an individual person, but should instead be assigned to an agency or institutional group in the region. Maintenance is recurring, and necessarily is a long-term effort. The responsibility may be delegated to an individual at any given time, but the overall responsibility should be a stated role of an institution or agency in the region. Sometimes this responsibility can be shared by agencies.

6.2.1 Requirement of the Architecture Maintainer

There are two key considerations in selecting a maintainer for a regional ITS architecture:

- Does the maintainer have the necessary skills/resources?
- Does the maintainer have the mission and authority to maintain the architecture?

Skills and Resources: Maintaining a regional ITS architecture uses a range of skills. To properly evaluate changes to the architecture the maintainer must have staff members that:

- are knowledgeable of the existing regional ITS architecture, implying a detailed technical understanding of the various parts of the architecture and how changes would affect each part
- have an understanding of transportation systems in the region, although this understanding can reside jointly in the group of agencies/stakeholders who participate in the maintenance process
- have an understanding of the tools used to create (and to update) the architecture, which might include knowledge of the Turbo Architecture tool, if that is used to hold some of the architecture information

The agency responsible for maintaining the architecture needs to have the skills within its own organization or consider acquiring the skills. In either case, the agency needs the necessary funding to support the maintenance effort.

Missions and Authority: The agency that maintains a regional ITS architecture ideally is one that has broad functional responsibilities across the full scope of the regional ITS architecture. In this case, "scope" represents the geographic area of the region, the transportation functions in the region, and the time frame for deployment of new ITS elements and interfaces in the region.

6.2.2 Maintainer for the Regional Architecture

Given that the geographic scope of this corridor ITS architecture corresponds to the entire stretch of the I-10 Corridor through several states, and many of the region's ITS assets will be operated by a variety of different agencies, the most appropriate group to lead architecture maintenance activities is the I-10 Corridor task force or stakeholder group for this project. It is recommended that one of the state representatives' staff undertake this role in close coordination with the other major stakeholder partners.

When one agency or institution takes responsibility for architecture maintenance, they may use agreements to create a management/oversight function (e.g., a "regional ITS architecture maintenance committee") to oversee regional ITS architecture maintenance work, which would have representation from the key stakeholders to the agreement as listed above. This management/oversight function might be given management authority over the maintenance process. In this way, the stakeholders are investing in and controlling their own regional ITS architecture, and they will have direct responsibility for the quality of the product. **Evaluating and Approving Changes:** It is proposed that the Regional ITS Architecture Maintenance Committee, or a subgroup of that Committee, be responsible for evaluating and approving the changes made to the architecture by the maintaining agency. The group evaluating and approving changes should include representatives of key stakeholders, ideally members from the areas of traffic, transit, public safety, and maintenance.

6.3 When will the Architecture be Updated?

Alternative Approaches

How often will the regional ITS architecture be modified or updated? There are two basic approaches to the issue of update interval: periodic maintenance and exception maintenance. Each has their advantages and disadvantages. They are not mutually exclusive, and an approach can be developed that is a combination of the two basic models.

Periodic Maintenance: This approach ties the maintenance of the regional ITS architecture to one of the recurring activities of the transportation planning process. For example, if an MPO is the lead maintenance agency for a region, it's natural that the regional ITS architecture would be updated at the same frequency as the regional transportation plan is updated (every three to five years) or the transportation improvement program is updated (at least every two years). Publication and versioning costs are minimized for the periodic maintenance approach since there is a new version only once in the maintenance cycle.

Exception Maintenance: This approach considers and makes changes to the regional ITS architecture in a

process that is initiated as needed. This is very convenient for Rule 940 consistency issues, but may be more costly than a periodic process, where requests for changes are queued until they are all addressed at once. Publication and versioning costs are dependent on the frequency of changes made to the regional ITS architecture.

Combined Periodic and Exception Maintenance:

This approach is the most responsive to stakeholder needs, and perhaps the most likely to succeed with regard to use of the regional ITS architecture; however, it implies the greatest cost. Specific stakeholder requests are dispatched immediately, and a more thorough process of analysis is periodically applied to discover and incorporate new ITS requirements.

6.4 What Will be Maintained?

What aspects of the regional ITS architecture will be maintained? Those constituent parts of a regional ITS architecture that will be maintained are referred to as the "baseline." This section considers the different "parts" of the regional ITS architecture and whether they should be a part of the baseline. The parts discussed are:

- description of region
- list of stakeholders
- operational concepts
- list of ITS elements
- list of agreements
- interfaces between elements
- system functional requirements

- applicable ITS standards
- project sequencing

One of the benefits of a regional ITS architecture is to enable the efficient exchange of information between ITS elements in a region and with elements outside the region. Efficiency refers to the economical deployment of ITS elements and their interfaces. The result of these ITS deployments should be contributions to the safe and efficient operation of the surface transportation network. Each of the components in the regional ITS architecture below have a role in this economy, and appropriate effort should be levied to maintain them.

6.4.1 Description of Region

This description includes the geographic scope, functional scope, and architecture time frame, and helps frame each of the following parts of a regional ITS architecture. Geographic scope defines the ITS elements that are "in" the region, although additional ITS elements outside the region may be necessary to describe if they communicate ITS information to elements inside the region. Functional scope defines which services are included in a regional ITS architecture. Architecture time frame is the distance (in years) into the future that the regional ITS architecture will consider. The description of the region is usually contained in an architecture document, but may reside in a database containing aspects of the regional ITS architecture, and should certainly be a part of the baseline.

6.4.2 List of Stakeholders

Stakeholders play a key role in the definition of the architecture. Within a region they may consolidate or separate and such changes should be reflected in the architecture. Furthermore, stakeholders that have not been engaged in the past might be approached through outreach to be sure that the regional ITS architecture represents their ITS requirements as well. The stakeholders should be described in architecture documentation (and may also reside in a database representing aspects of the regional ITS architecture). Their listing and description should be part of the baseline.

6.4.3 Operational Concepts

It is crucial that the operational concepts (which might be represented as roles and responsibilities or as customized market packages) in a regional ITS architecture accurately represent the consensus vision of how the stakeholders want their ITS to operate for the benefit of surface transportation users. These should be reviewed, and if necessary, changed to represent both what has been deployed (which may have been shown as "planned" in the earlier version of the regional ITS architecture) and to represent the current consensus view of the stakeholders. Many of the remaining maintenance efforts will depend on the outcome of the changes made here. The operational concept will reside in the architecture documentation and possibly in a diagramming tool, if a customized market package approach is used, and should be part of the baseline.

6.4.4 List of ITS Elements

The inventory of ITS elements is a key aspect of the regional ITS architecture. Changes in stakeholders as well as operational concepts may impact the inventory of ITS elements. Furthermore, recent implementation of ITS elements may change their individual status (e.g., from planned to existing). The list of elements is often contained in architecture documentation, and is key information in any architecture database. It is a key aspect of the baseline.

6.4.5 List of Agreements

One of the greatest values of a regional ITS architecture is to identify where information will cross an agency boundary, which may indicate a need for an agency agreement. An update to the list of agreements can follow the update to the operational concept and/or interfaces between elements. The list of agreements will usually be found in the architecture documentation. This listing should be a part of the baseline.

6.4.6 Interfaces between Elements

Interfaces between elements define the "details" of the architecture. They are the detailed description of how the various ITS systems are or will be integrated throughout the time frame of the architecture. These details are usually held in an architecture database. They are a key aspect of the architecture baseline, and one that will likely see the greatest amount of change during the maintenance process.

6.4.7 System Functional Requirements

High-level functions are allocated to ITS elements as part of the regional ITS architecture. These can serve

as a starting point for the functional definition of projects that map to portions of the regional ITS architecture. Because of the level of detail, these are usually held in spreadsheets or databases, but may be included in the architecture document. They are a part of the baseline.

6.4.8 Applicable ITS Standards

The selection of standards depends on the information exchange requirements. The maintenance process should consider how ITS standards may have evolved and matured since the last update, and consider how any change in the standards environment may impact previous regional standards choices, especially where competing standards exist. For example, if XML-based center-to-center standards reach a high level of maturity, reliability, and cost-effectiveness, then a regional standards technology decision may be made to transition from investments in other standards technologies (e.g., CORBA to XML). The description of the standards environment for the region, as well as the details of which standards apply to the architecture, should be part of the baseline.

6.5 How will the Architecture be Maintained?

The I-10 Corridor task force, in coordination with the corridor ITS architecture maintenance committee, will maintain the architecture in accordance with guidelines contained within FHWA's Regional ITS Architecture Maintenance White Paper. In addition to detailing the recommended maintenance process, the white paper also contains examples of maintenance plans developed by a range of agencies and regions throughout the country.

Alabama District Traffic Management Center	
	State DOT Central Offices Alabama Traveler Information Services
Existing	

|--|

County/City Traffic Management	State DOT Central Offices
Center	Alabama Traveler Information Services

State Emergency Management Age Emergency Response Dispatch Centers	State DOT Central Offices Alabama Traveler Information Services
Existing	

Accident report border clearance event citation daily site activity data violation notification border agency clearance results credentials information safety status information transportation border clearance assessment- trip declaration identifiers safety inspection report	State Regulatory Agencies Arizona Commercial Vehicle Check
---	---

State Traffic Management Centers Arizona District Traffic Management Center	State DOT Central Offices Arizona Traveler Information Services
Existing Planned	

Local City/County Governments County/City Emergency Operations Center		
Latert orbification evacuation information 	State DOT Central Offices Arizona Traveler Information Services	
Existing		
	67	

City/County Traffic Management Cen County/City Traffic Management Center	State DOT Central Offices Arizona Traveler Information Services
Existing	

State Emergency Management Agen Emergency Response Dispatch Centers		
Lalert status alert notification evacuation information -transportation system status	State DOT Central Offices Arizona Traveler Information Services	
Existing Planned		
		69

	State DOT Central Offices Arizona Traveler Information Services	I-10 Corridor Task Force I-10 Corridor Information Gateway	
--	--	---	--

	I-10 Corridor Task Force I-10 Corridor Information Gateway	
Planned	Planned	

CalTrans District Traffic Management Center	
fare and price information logged special vehicle route- road network probe information request fare and price information road network conditions	Private Sector Information Service Pr Private Information Service Providers
Existing	

Louisiana	Regulatory Agencies Commercial Vehicle Check Systems Dorder clearance data Commercial Vehicle Dreach driver tog "electronic lock data "border clearance data "driver tog" "electronic lock data request- border clearance data	
		98

|--|

Local City/County Governments County/City Emergency Operations Center	
Planned	110

Local City/County Governments County/City Emergency Operations Center	State DOT Central Offices Florida Traveler Information Systems
Existing	

City/County/ Traffic Management Cen County/City Traffic Management Center	State DOT Central Offices Florida Traveler Information Systems
Existing	

State DOT Central Offices	
New Mexico Information Service Provider Systems	
request fare and price information road network conditions fare and price information logged special vehicle route road network probe information	City/County Traffic Management Cen
	County/City I rattic Management Center
Existing	

|--|

St	ate Emergency M	anagement Agen			
	Emergency Res	oonse Dispatch	-		
	Cent	ers			
	1 media information re	quest			
	-incident information for	nedia			
				Media	
				Media	
	E.	isting			

State DOT District Offices Florida District Traffic Management Center	
fare and price information logged special vehicle route request fare and price information road network conditions	State DOT Central Offices Florida Traveler Information Systems
Existing	

toll service change response	State Regulatory Agencies
toll service change request	Statewide Toll Administrations

State Regulatory Agencies New Mexico Commercial Vehicle Administration Systems	I-10 Corridor Task Force I-10 Corridor Information Gateway
Planned	

State DOT Central Offices New Mexico Information Service Provider Systems	I-10 Corridor Task Force I-10 Corridor Information Gateway
Planned	

Louisiana District Traffic Management	
Center	
fare and price information	
road network probe information	
request fare and price information-	
	State DOT Central Offices
	Louisiana Traveler Information Service
	Provider Systems
Existing	

